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1. INTRODUCTION

1.1 Purpose and Objective

The overarching objective of the study is to evaluate the synergistic use of multi-source Earth Observation
(EO) and in-situ data, to understand the effects of multiple stressors and their cumulative effects on crops.
The new and planned European satellite missions are expected to provide data with improved spatial,
spectral, and temporal resolution, making them valuable resources for monitoring, and analyzing crop
stressors. The project takes advantage of the complementary nature of these data sources to gain insights
into the effects of both individual and cumulative stressors on agricultural crops. The synergistic use of EO
data, combined with comprehensive data analysis techniques, can enhance our ability to detect, understand,
and respond to multiple stressors affecting agricultural crops.

The key aim of the study is to develop products that can be used to monitor these stressors and provide a
scientific roadmap for the future development of EO products and techniques for monitoring multiple crop
stressors. These products will be useful for farmers, agronomists, policymakers, and researchers, and can
provide meaningful insights into crop health and the environmental factors impacting it.

The core objectives of the study articulate around the following elements:

e Exploring and identifying suitable data (both in-situ and EO based) and crop models that can be used
to analyze the relationship between selected key multiple stressors and crops growth status
evolution.

e Performing detailed field experiments to evaluate the effects of selected stressors on crop growth
status.

e Designing and developing algorithms that can exploit existing in-situ data, field campaign data and
EO data to monitor multiple stressors and their impact on crop growth status.

e Generating experimental datasets (using the chosen algorithm/s) that can be used to monitor the
effect of multiple stressors on crop growth status.

e Demonstrating the use of experimental datasets to advance scientific understanding of the impacts
of multiple stressors on crop growth status.

e  Working with relevant stakeholders to demonstrate the usefulness of the experimental datasets and
scientific findings in mentoring multiple stressors and their impacts on crop growth status.

e Engaging the user community and scientists in validation and critical assessment of the proposed
products and impact assessment studies and the design of a scientific roadmap for addressing major
scientific challenges in using EO data to monitor multiple crop growth stressors.

1|Page
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This technical note presents the outcome of the first task on the project concerning the Consolidation of Open
Scientific Issues. This baseline document hence contains a comprehensive analysis of the scientific basis of the
project. In particular it:

e Identifies main scientific challenges and knowledge gaps in using EO and in-situ data to understand
and monitor impacts of multiple stressors on crops.

e Identifies up to date EO products and ancillary datasets, that can be used in the development and
validation of the new crop stress products.

e Reviews strengths and weaknesses of the current methods and algorithms applied over EO and in-
situ data to understand and monitor impacts of multiple stressors on crops.

e Identifies relevant testing areas over which the crop stressor products will be generated and
evaluated.

e Evaluates ideal requirements (e.g., accuracy levels, spatial and temporal resolutions, and composite
periods) to generate experimental datasets for understanding and monitoring impacts of multiple
stressors on crops.

e |dentifies other ongoing projects and initiatives with which we could interact all along the project for
an enhanced valorization of the EO products.

Ultimately, the research conducted in this project will simplify the data exploitation from the various satellite
missions in monitoring the individual and cumulative impacts of various stressors on crops. The recent EO
data from both European missions (e.g., Copernicus Sentinel missions, PRISMA, EnMap) and US missions (e.g.,
Landsat mission) and experimental in-situ data (e.g., FLEXSense campaign data, LSTM, CHIME, SARSense) have
potential to address the challenge of monitoring both the individual and combined effects of several stressors
on crop growth status, productivity, and ecosystem service. The use of these advanced remote sensing
technologies and their integration with data analytics will assist us in addressing global food security
challenges. It will advance our ability to monitor crop health, detect stressors, and optimize crop management
strategies.

1.2 Document Plan

The remaining sections of the document are structured as follows:

e Section 2 presents the main challenges and knowledge gaps in monitoring multiple stressors in the
cropping systems.

e Section 3 reviews the existing ground and satellite databases to be considered in the EO4CerealStress
project.

e Section 4 addresses key methodologies for crop stress detection and monitoring

e Section 5 identifies the test areas over which the EO4CerealStress Experimental Dataset products will
be generated and summarizes the output EO products.

2|Page
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e Section 6 presents framework for validation and evaluation of the project EO products and describes
the validation/evaluation approach to be used.

e Section 7 details the collaborations with the different scientific communities and synergies with other
projects which will be undertaken during the project.

2. CHALLENGES IN MONITORING MULTIPLE STRESSORS IN
CROP

2.1 Key stressors and their impact on agriculture

Agriculture is subject to various biotic and abiotic stressors, including drought, pests, diseases, nutrient
deficiencies, heavy metals, extreme temperatures, and weather events. Abiotic stresses are caused by either
physical or chemical factors and biotic stresses are caused by infectious agents such as bacteria, fungi, insects,
etc.) (Gull et al. 2019; Dresselhaus and Hickelhoven, 2018). The physiological changes caused by these
stressors have a significant impact on plant growth, which has a detrimental effect on agricultural production.
The impact of each type of stress on crop yield can vary depending on several factors, including the specific
stressor, the crop species, and environmental conditions. Plants can respond to these adverse conditions
through various physiological defense mechanisms. However, plants may have limited natural adaptations to
cope with certain abiotic stresses. For example, many crops are sensitive to extreme temperatures or lack
mechanisms to utilize limited water resources efficiently. Some crops may have developed natural resistance
mechanisms against certain pests or diseases. The negative effects of stressors on plant health can be reduced
with early detection of these mechanisms and implementation of protective measures. Biotic stresses are
often more localized, affecting individual plants or specific fields. They can be managed through various
strategies like pesticides, crop rotation, and breeding for resistance (Atkinson and Urwin, 2012). However, a
comprehensive monitoring of the state of agricultural crops will contribute to the early and accurate
estimation of yield losses and prevent crop failures.

Despite the population explosion and increasing food demand in the last century, farmers continue to suffer
from large economic losses due to climate and biotic stressors. Food security is becoming an urgent issue as
the global impacts of the climate crisis become more noticeable (Rivera et al. 2023). Climate change is altering
weather patterns, leading to increased frequency and severity of extreme weather events such as droughts,
floods, heatwaves, and storms. These events can have devastating effects on crop yields and can lead to
significant economic losses for farmers (Frona at al. 2021; Gornall et al. 2010). Moreover, new strains of
pathogens and pests are emerging, and plants are developing resistance to pesticides, making it challenging
to manage these biotic stressors effectively. Since, many agricultural systems rely on monoculture farming,
where a single crop is cultivated over large areas. This practice can increase the vulnerability of crops to biotic
stressors (Grant, 2007). Small-scale and resource-constrained farmers often lack access to modern farming
technologies, quality seeds, irrigation, and pest management tools. This limits their ability to adapt to and
mitigate the effects of stressors. Despite ongoing challenges, the agricultural sector continues to adapt and
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innovate to meet the growing global demand for food while addressing the economic losses caused by climate
and biotic stressors. Sustainable and resilient farming practices are increasingly important in ensuring food
security in the face of these challenges.

Certain physical and physiological traits of cereal crops are critically important for monitoring agriculture and
food production. Crop physical traits like morphology and canopy height can impact lodging resistance (the
ability to stand upright). Leaf characteristics can define photosynthetic efficiency and disease susceptibility.
The tillering and morphology of flowers, spikelets, and panicles are related to grain production. Depth of the
root system can affect nutrient and water uptake; the fibrous rooting system of cereal crops is well-suited for
drought tolerance and adaptive to changing soil conditions. In physiological traits, traits related to
photosynthesis and respiration i.e., chlorophyll content, photosynthetic efficiency, and carbon assimilation
rates are direct measures for plant growth and maintenance. Crop health is usually tested through its
efficiency in physiological processes and tolerance to stress i.e., nutrient uptake efficiency, resistance to
fungal, bacterial, and viral diseases, heat tolerance, deep root systems, reduced transpiration rates, and
osmotic adjustments in drought conditions. Understanding and monitoring these traits and crop efficiencies
are essential for sustainable and productive agriculture. Though the amount and quality of multisource data
is constantly increasing, integration, analysis and making the best decisions possible using this data in a holistic
manner is still a challenge.

Remote Sensing (RS) technologies serve as a diagnostic tool that can act as an early warning system, allowing
the agricultural community to counter potential problems before they can negatively impact crop
productivity. It has non-destructive method of data acquisition, making it an inevitable tool to meet multiple
goals in agriculture, such as monitoring crop production, choosing economically viable activities, reducing
negative environmental impacts, contributing to climate mitigation and minimizing resource depletion. The
integration of sensors, automatic data recording, satellite datasets, Unmanned Aerial Vehicles (UAV) datasets,
Machine Learning (ML) technology and decision support systems can provide a holistic framework to detect
and monitor crop stress. Combined use of sensors can capture different aspects of the agricultural
environment. For example, Environmental Mapping and Analysis Program (EnMAP)’s hyperspectral data for
identifying specific stressors in crops and Sentinel 2 for frequent and large-scale monitoring of crop
parameters. The combination of spectral and spatial information can enhance detection performance in
comparison to the use of spectral capacities alone. By combining various soil moisture, thermal, optical, and
hyperspectral sensors, we can obtain a precise and more comprehensive dataset covering a wide range of
parameters, such as soil moisture, temperature, spectral reflectance, and more. This can give us a holistic
understanding and continuous monitoring of the agricultural system. This project will focus on the integrated
use of sensors and deriving a large set of crop variables to improve understanding of the stressors and their
effects which will support timely interventions for crop management and food security.

The use of RS data in agriculture monitoring has increased since 1970s. Increasing publications in the field of
precision farming and environmental monitoring are giving birth to a wide diversity in RS applications in plant
stressors as observed by Lasalle et al. 2021 in their work and growing trend is shown in the figure 1. Lasalle et
al. (2021) reviewed articles published until 2020, following themes, “Hyperspectral”, “field/reflectance

s

spectroscopy”, “imaging Spectroscopy”, and “leaf optical/spectral properties” further covering keywords of
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“plant or vegetation stress”, “stressor”, “stressful Conditions”, and “plant or vegetation health”. Through
Google Scholar and Scopus search engines, a total of 466 peer-reviewed articles have been identified since
1970. Following the same meta review technique, a total of 65 documents were recently published from 2021
onward as retrieved through SCOPUS Database. Nevertheless, this review study found two major gaps in the
current methodologies.

e Discrimination of plant stressors with similar effects on plants
e The transferability of the methods across scales.

Further research gaps are discussed in the following section.

70 (
0 HYPERSPECTRAL REMOTE SENSING OF PLANT STRESSQRS: 1970 - 2020

I 1 -
50 Field spectroscopy Imaging spectroscopy

a0 | T *

20 A

Published articles

10

1970 1975 1980 1985 1990 19395 2000 2005 2010 2015 2020
Year
Figure 1. displays emerging trend of hyperspectral remote sensing for monitoring plant stress since 1970.
(Lasalle, 2021)

2.2 Main scientific challenges and knowledge gaps in using EO and in-situ
data

Scientific studies are growing in assessing the impact of multiple stressors on crops using EO data, machine
learning and radiative transfer models (RTMs). Several challenges may arise when integrating stressors in
modeling, including accurately quantifying interactions between stressors, handling uncertainties in modeling
multi-stressor interactions, addressing data requirements, and validating model predictions with real-world
data (Rapaport et al. 2015; Radoglou-Grammatikis et al. 2020). From implementation perspective of this
project, some scientific challenges could be:

1. Integrating diverse datasets from different sources (EO satellites, ground-based sensors,
climate records) is challenging due to variations in data formats, resolutions, and
spatiotemporal scales.

5|Page
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A single or numerous stress sources, as well as biotic or abiotic stress combinations, can
cause plants to have very similar physiological responses, making their evaluation
problematic (Blum, 2016). To date, few studies have focused on disentangling
environmental stress sources. The distinction between biotic and abiotic stresses is a
difficult undertaking.

Effects of the multiple stressors (e.g., drought, pests, diseases, nutrient deficiencies) can be
synergistic or antagonistic on plant health and reflectance, which is a major limitation of the
current methods as most cannot unravel the contribution of individual stressors to the
response observed, which is only possible through proximal reflectance measuring methods
i.e., drones, UAVs, handheld devices, towers etc.

Some technical challenges are associated with proximal hyperspectral sensor’s setup, data
processing, and sample type.

Proximal sensing has limited spatial coverage. Some platforms are weather-dependent, and
adverse weather conditions can limit data collection opportunities. Some like UAVs can have
payload constraints, limiting the number of sensors and the size of cameras that can be
carried, which may affect the spectral range and resolution of collected data.

Balancing the need for high temporal and spatial resolution data with the limitations of
available satellite sensors and resources consistency

Crops and stressors can exhibit significant regional and local variations, making it challenging
to generalize findings.

Challenge lies in assessing the effectiveness of stressor mitigation strategies while ensuring
their applicability and scalability across diverse agricultural settings.

Most RS methods are either species-specific or dedicated to a single scale of monitoring
(leaf, canopy, images) and context oriented, such as precision farming requires monitoring
stress over mono specific crop fields while environmental monitoring requires methods
that can be applied at a broad scale over mixed canopies.

The transition from controlled greenhouse experiments, where these methods are often
developed, to complex and variable field conditions introduce uncertainties. Greenhouse
conditions may not adequately represent the full spectrum of environmental factors and
stressors encountered in the field, making it difficult to accurately assess how well the
strategies will perform in practical, real-world scenarios, as observed in spectral response
models developed for salinity and foliar nitrogen, primarily based on greenhouse
experiments. These models may not be readily applicable in field conditions due to limited
factors considered in greenhouses and the presence of multiple stresses in the field.
(Goldsmith et al. 2020).

On a large scale, the application of data assimilation is generally limited due to the
availability and quality of the data from RS. Relatively high-resolution data from RS can
provide accurate estimates of crop variables, they may be limited by scale, repeat time, and
the availability of cloud-free imagery.
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A significant challenge in remote sensing is the retrieval of desired information.
Multispectral sensors primarily offer canopy structural measurements, such as
photosynthetically active leaf area, but their results can be limited due to comparatively
coarse spectral sampling.

e To address spatial and temporal assessment needs, the spectral domain is often combined
with hyperspectral remote sensing. However, the accessibility of high-quality hyperspectral
data from missions like PRISMA, EnMap, and DESIS is not common.

e In cases where hyperspectral data availability is limited, the use and processing of existing
hyperspectral data from field campaigns, as well as the development of accurate machine
learning models for remote sensing applications, can be computationally intensive and may
require adequate ground-truthing for model validation.

e Satellite-based sensor platforms are valuable for larger-scale monitoring, providing
measurements over broader areas. However, they often suffer from limitations in data
resolution, and cloud coverage can significantly affect the quality of information collected.

e Satellite-based sensors can revisit areas on a daily to weekly basis, but their limited revisit
time may hinder their effectiveness, especially for detecting early signs of stress.
Nevertheless, proximal sensing offers flexibility in terms of timing.

e Satellite sensors may not always be suitable in specific environmental conditions, such as
those observed in the aftermath of frost events. These conditions may not be conducive for
gathering spectral data.

e There is still uncertainty regarding the ability of satellites with spatial resolutions of 1-30
meters to confidently detect certain stress signals (as discussed in Murphy et al. 2020).

e One significant gap exists in the combined use of high to low-resolution sensors for

gathering spectral signals. Since different stressors can generate similar stress reactions,

remote sensing alone often cannot distinguish between different abiotic stresses.

Some key knowledge gaps are found in:

1.

Developing methods to upscale local observations to regional and global assessments while
accounting for spatial and temporal variability

Developing standardized protocols for model integration and validation that consider the complexity
of interactions among stressors and environmental variables.

Advancing spectral and machine learning techniques to improve the discrimination and identification
of specific stressors.

Developing standardized and cost-effective methods for calibration and validation that can be
applied across diverse regions and ecosystems.

Determining optimal resolutions for specific stressor detection and monitoring scenarios and
developing methods to address trade-offs between them.

Developing robust techniques for seamless data integration and fusion, enabling a holistic view of
crop conditions, remains a priority.
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EO4CerealStress aims to address significant knowledge gaps by compiling an experimental database that
considers both single and multiple stressors while accommodating various field scenarios and variabilities.
The project will focus on developing new spectral algorithms to improve accuracy and precision in stress
detection. To achieve these goals, the project will collect extensive field data, including information on soil
types, crop stress indicators, and crop performance. Moreover, existing data on crop yield and management
practices from farmers, extension services, and government agencies will be incorporated into the project.
This database will undergo standardization, cleaning, gap-filling, and other preparations to make it ready for
use in detecting the impacts of stressors on crops.

3. EXISTING GROUND AND SATELLITE DATASETS ON CROP
STRESS

This section deals with the available ground and RS datasets that can be used in the development and
validation of the new EO-based products for understanding and monitoring the impacts of multiple crop
stressors.

3.1 Optical Remote sensing: Coarse to high resolution satellite

Sensors
In the last three decades, Remote sensing has become one of the main sources of the data that can be used
to provide spatial information on crop status in a comprehensive and nondestructive manner at regional to
global scale. The availability of Data sets from RS has evolved significantly due to improvement in technology
and development of new sensors (both in the optical and microwave domains). A list of available RS data is
given in Table 1.

Table 1. provides a list of satellite data for the years (2015 — 2023).

Satellite Sensor Spatial Temporal Spectral Datasets
Resolution  Resolution Resolution
Coarse Resolution

SMOS (2009 - Microwave 35km 3 days L-Band Brightness

present) (19.4 — temperature,
76.9cm) Soil moisture

MODIS (Terra: Multispectral 250 — 1000 1 -2 days 36 bands Black sky

1999 — present, m (0.4-14) FAPAR, GPP,

Aqua: 2002 - Landcover, ET,

present) NDVI

Fine Resolution

Landsat 7 (1999 -  Multispectral 30-120m 16 days Cropland

present) products (30m

Landsat 8 (2013 - — South Africa)

present)
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Sentinel 1 (2013 -  Radar 5*%¥20m 6 days C-Band Level 1to 2
present) (3.75 - 7.5

cm)
Sentinel 2 (2015—-  Multispectral 10,20, and 5 days 10 bands Level 1C to
present) 60 (0.4-1.3) Level 2A
Sentinel 3 (2016 —  Multispectral  300m 27 days 21 bands Level 1B
present) (0.4-1)
HJ-1 A/B CCD Multi + 30m 2 — 4 days 4 bands Level1-2
(2009 - present) Hyperspectral (0.4-0.9)
GEOSAT-1 (2009 —  Multispectral 22 m Daily 3 bands Multiple,
present) (0.4-1.3) Levell a,b,c
SPOT 5 (2002 —- Multispectral  2.5-30m  1-26days 4  bands LevellA to
2015) (0.4-0.8) Level2B
SPOT 6 (2012 —
present)
Rapid Eye (2003 —  Multispectral 6.5 m 1-5.5days 5 bands Level 3a
2020) (0.4-0.8)
GaoFen-1 (2006 —  Multispectral 16 m 4 days 4 bands Level 1
present) (0.4-0.8)
EnMap (2022 - Hyperspectral 30m 4 —-27 days 246 bands Level 1B, 1C,2A
present) (0.4-2.5)
PRISMA (2019 —- Hyperspectral 30m 29 days Bands 239  LevelO to Level
present) (0.4-25) 2

<12nm
PlanetScope (2016  Multispectral 3 —5m Daily 8 bands Level 1B to 3B,
— present) (0.4—-0.85) Multiple
ECOSTRESS (2018 Thermal 100m 3 days 6 bands LST,
— Present) (0.8-1.2) Evaporative

Stress Index

DESIS (2018 - Hyperspectral 30m 3-5days 235 bands LevellA to 2A
present) 04-1

(3.3 nm)
FSSCat (2020 - Hyperspectral 75m rkx 50 bands Level 1C
2021) 04 - 13

(18nm)

Many optical medium-resolution satellite sensors provide freely available data that can be valuable for crop
stress assessment. Some key satellite missions and sensors that researchers commonly used for monitoring
crops and studying crop stress are shown in Table 1. MODIS sensors, aboard NASA's Terra and Aqua satellites,
provide daily global coverage at a coarser spatial resolution (250 to 1000 meters). Although the spatial
resolution is lower compared to other sensors, they are still valuable for long-term monitoring of vegetation
and crop health at large scale. They are valuable for monitoring crop health and detecting stress conditions.
Sentinel-3's Ocean and Land Colour Instrument (OLCl) and Sea and Land Surface Temperature Radiometer
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(SLSTR) instruments can also be useful for monitoring crops. Sentinel-3 (S3) satellite measures visible and
infrared radiance since 19 April 2016, with a revisit time of 1.1 days (Donlon et al. 2012). Its high revisit time
and the early overpass time (before 11:20 a.m.) enable the monitoring of vegetation over the growing season
and limit the problem of clouds. Sentinel-2A and Sentinel-2B provide high-resolution multispectral data (10
meters for some bands) with a revisit time of 5 days. PlanetScope operated by Planet Labs offers daily global
coverage at a high spatial resolution (3 to 5 meters). Its frequent revisit time and high-resolution data are
advantageous for detecting and monitoring stress factors. Compared to conventional multispectral EO
systems, emerging hyperspectral satellite missions give a variety of observable variables, higher accuracy of
information and transferability of variable estimation techniques. Examples of sources of hyperspectral data
include i.e., EnMap, PRISMA, DESIS. They can give detailed soil and crop parameters after processing such as
the ratio of vegetated to bare soil area, water and pigment content of plants, soil organic, clay, carbonates
and salt content, and soil moisture. Their entire spectral information within hyperspectral data can be
harnessed from machine learning approaches with enhanced spectral analyses. Their spatial and temporal
resolution are being fully exploited by linking empirical and physical approaches and generalized empirical
models, further details are in the section 4.

Some of the existing datasets and application examples from different studies are:

e The Harmonized Landsat Sentinel-2 (HLS) is a Level 3 product providing high quality crop related
information at 30 m resolution, easy to use for cover crops, irrigation, and tillage practice
assessments, available on USGS Earth Explorer and Landsat Look viewer.

e GFSAD1000 is providing cropland extent at 1km prepared from integration of multi-sensor remote
sensing data (e.g., Landsat, MODIS, AVHRR), secondary data, and field-plot data providing Landsat
derived rainfed and irrigated cropland product.

e In another study, a global scale high resolution FAPAR product (30m) is generated from the fusion of
Landsat and Glass through a hybrid algorithm developed from the integration of physically based
radiative transfer models and machine learning (Jin et al. 2022).

e Different Sensors data can be harmonized to retrieve crop performances. One of the examples is Jiri
Tomicek et al (2022)’s work in the Czech Republic in which a dense seasonal trajectory generated
with harmony of Sentinel-2 MSI and Landsat OLI and tested for the six agronomic crops: winter
wheat, spring barley, winter rapeseed, alfalfa, sugar beetroot, and corn. A simple linear
transformation was applied on vegetation indices i.e., (NDVI, MSAVI, and NDWI_1610) using an
artificial neural network for which training data derived from the PROSAIL radiative transfer model.
By merging Sentinel-2 (A/B) and Landsat (8/9) satellites, a dense harmonized LAl time series can be
created.

e Example of an open-source applications from fusion of multiple sensors like FARMA which enables
large area mapping with modest computing power, its application assessed over WorldView VHR
optical, Sentinel-1 Synthetic Aperture Radar, and Sentinel-2 and Sentinel-3 optical imagery, such
fusions facilitate efficient agriculture mapping and monitoring broadly (Thomas et al. 2020). It could
be a tangible approach for regional scale very high-resolution mapping; however, high cost of
commercial satellites could be a potential constraint.
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3.2 Proximal sensing through Aircraft to Handheld Cameras:

The use of proximal sensing tools in crop monitoring and stressor detection is continuously evolving, offering
new opportunities to enhance agricultural practices and address challenges related to crop health and
productivity. It is one of the most promising technologies for the assessment of plant physiology, as well as
their reactions to stress by combining spatial and spectral information. It can be with non-imaging sensors
without the spatial field of view or imaging sensors, or it can be of varied spectral ranges from multispectral
to hyperspectral domain depending installed camera devices. The multispectral UAVs and affordable field
sensors provide non abstracted data at high spatial and temporal resolution. UAVs provide relatively low-cost
imaging at high spatial resolution, low altitude, and user-preferred temporal resolution. Therefore, they are
well suited for field scale application.

In fact, hyperspectral UAVs equipped with remote sensing payloads have become increasingly popular for
crop monitoring. They offer flexibility in data collection, allowing for rapid and high-resolution imaging of
fields and providing timely and localized information about crop stressors, enabling precise interventions.
UAV-based wall-to-wall ultrahigh-resolution canopy map is a cutting-edge mapping technique that leverages
drones to create a comprehensive and highly detailed map of the canopy cover in a specific area, providing
valuable data for crop cover. Compared to satellite imagery in which some are relatively expensive (e.g.,
RapidEye) and are susceptible to cloud conditions (e.g., Sentinel-2), they are flexible in spectral range allowing
for precise data collection. Pest is one of the main biotic stressors of crop, for which hyperspectral imaging
has been preferred in proximal sensing for detection. Most studies exploited very-high-resolution UAV images
(<1 m) covering the VNIR domain to detect pest injury in crops, while those on wild vegetation have mostly
used high-resolution airborne images (1 — 5 m). The selection of appropriate platform varies by research
problem and focus.

3.2.1 Handheld and fixed Spectroradiometers

Handled and fixed spectroradiometers are used to collect leaf and canopy spectra under both controlled and
natural conditions. These proximal measurements are commonly used for calibrating stress monitoring
methods intended to be applied to airborne or satellite imaging spectroscopy (Lassalle et al. 2019a; Sanches
et al. 2013a). Non-imaging sensors like the ASD FieldSpec are indeed lightweight, portable, and relatively easy
to use. Measurements performed with a leaf-clip and an internal light source in ASDs are best-suited to avoid
the influence of the environment of the measured spectrum, including light illumination, atmospheric noise,
clouds, shadows, and surrounding materials. Some other examples are shown in table 2 with specifications.

Table 2. shows specifications of some widely used proximal instruments.

Proximal Instrument Spectral range Spectral resolution Spectral

band
ASD FieldSpec3 spectroradiometer ~ 300-2500 nm 3 nm between 350-1000 nm, 10 2151
nm between 1000-2500 nm
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ULTRIS X20 Plus hyperspectral 350-1000 nm 350-1000 nm,4nm 164
mounted on aircraft
DJI Phantom 4 450 — 840nm 16 —26nm 6
Field Spec Pro FR2500 350-2500 nm 3-8nm 1512
3nm @ 700 nm, 10 nm @ 1500
nm, and 10 nm @ 2100 nm
Headwall Hyperspec 400 — 2500 nm 350 - 2500 nm, 1 -3 nm spacing 537
Co-Aligned
VNIR-SWIR
Imaging Sensor

ULTRIS X20 Hyperspectral Imager ASD FieldSpec3 spectroradiometer
b Gt
3 - = A
~ gt gy
DJI Phantom 4 Multispectral Hyperspec Co-Aligned VNIR-SWIR

By varying the acquisition footprint, canopy reflectance can be studied from the scale of a single plant to that
of a complex species community. Drones can also be equipped with custom sensors to assist in detecting
abiotic stresses in their early stages. They can provide canopy-scale data with high spatial resolutions (<1m);
nevertheless, they have some limitations regarding payload and flight time. Sensors mounted on land-based
devices can give a high spatial resolution, allowing them to measure plant parameters at the leaf or canopy
scale, with spatial resolutions of up to one centimeter (Zhou et al., 2021). One advantage of proximal
hyperspectral sensors, such as the co-aligned VNIR-SWIR camera with 537 channels from Headwall, is that
they can be configured to match the spectral settings of satellite-borne missions like PRISMA, Enmap, and
CHIME. This capability is demonstrated in the rice pilot project undertaken by the University of Seville. The
other means of proximal sensing are displayed in figure 2.
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Figure 2. Various proximal sensing platforms for spectral data collections (a) leaf reflectance using a leaf-clip
attached to a spectroradiometer, (b) canopy reflectance using a fore optics fixed at nadir, (c—d) close-range
hyperspectral imaging of (c) leaf samples and (d) plants, (e-h) canopy reflectance in the field using a
spectroradiometer (e) a fixed at nadir, (f) handled, and (g) mounted on a goniometer system and (h) a mobile
platform, (i—j) tree canopy reflectance using (i) a tower and (j) a telescopic boom lift, (k—I) canopy reflectance
using a spectroradiometer mounted on (k) a motorized vehicle and (I) a tractor. (m) Drone- and (n) airborne-
embedded hyperspectral imaging spectrometers proximal and images. (Lassalle, 2021)

In ground-based measurements, data can be acquired even at finer spatial resolutions and without
consideration of sensor size or weight, but sampling is slower and may be affected by environmental drift, as
occurs in large-scale studies (Liu et al. 2020b). In this case, a multiscale imaging technique would be beneficial
for obtaining comprehensive information about plant stress over a wide area with a high level of spatial and
spectral resolution. Applying multisource remote sensing data, such as multi-spatial, multitemporal, and
multi-angular, increases the estimation accuracy. In case of limited access to high spectral resolution, a
multisensory approach can be adopted but a major challenge would be the scaling effect if the land cover is
heterogeneous at the pixel scale.

Hyperspectral data from airborne platforms or drones have the potential to provide more precise spectral
information regarding crop stress, particularly in the red edge, NIR, and SWIR regions. Proximal measurements
at the canopy scale with UAVs make a good transition between leaf-scale proximal spectroscopy and broad-
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scale imaging. Airborne imaging also known as plane-borne hyperspectral imaging is a reliable solution for
monitoring plant stress at a broad-scale with high to very-high spatial resolution (50cm—-10 m). Secondly,
airborne hyperspectral images can be degraded to lower spatial and spectral resolutions to assess the
accuracy of stress monitoring under varying sensor specifications. This can be applied to evaluate the
compatibility of stress monitoring methods with operating satellite spectrometers and to formulate
recommendations for future sensor specifications. Some of the aerial campaign data from new hyperspectral
missions is now available. Over the last 5 years, ESA and other agencies have undertaken these airborne
campaigns to collect test data for several planned and new Satellite missions (e.g., EnMap, CHIME). Their
grographical locations are displayed in the figure 3. This data can be used for multiscale study of finding the
relation between crop biophysical variables and EO-based stress signature.

KleinAltend
Crop: Maize/mixi
soybean
Date: 30 Jun - 3 July,
Spatial: 1 m
Spectral: DUAI
10.55 (SWIR)

UAL 3.65 nm (VNIR); FIOU
IR)
: Soil wate"itﬁons
, @ N

Figure 3. Location of historical aerial campaign data archived for cal-val activities of new hyperspectral
missions.

Each data source has its own advantages and disadvantages. Combined proximal hyperspectral sensing with
airborne or satellite imagery, from leaf to satellite scale, could be a viable solution to detecting crop stress in
the landscape. It can set our baseline expertise to harness the new satellite missions, which are under
development and can provide even more accurate information about crops and the environment (Lassalle,
2021). UAV hyperspectral cameras offer very-high spatial (<1 m) and spectral resolutions to field operators
and enable timely flights over a specific area.

3.3 Existing Ground Datasets for Monitoring and Validation
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There are several existing ground datasets related to crop stress and agricultural monitoring that can be
exploited for sensor/model calibration and validation activities.

Some contextual information can be taken from USDA NASS that provides comprehensive
agricultural data, including crop condition reports, crop production statistics, and crop stress-related
information. For example CroplandCROS (https://croplandcros.scinet.usda.gov/) web application
give access to crop statistics, there are other streams like crop-CASMA (crop condition and soil
moisture analytics), VegScape (vegetation condition explorer based on some primary indices),

datasets on Crop Progress and conditions, crop sequence boundaries (interactive maps), disaster
analysis etc. All this information can be harnessed for cross comparisons and can be helpful in
methodology development.
AgMERRA (Agricultural Model Intercomparison and Improvement Project Modern-Era Retrospective
Analysis for Research and Applications) and Global Gridded Crop Model Intercomparison (GGCMI)
phase 1 dataset are examples of global gridded dataset that contains information on various
meteorological variables, such as temperature, precipitation, and radiation. Researchers use this
dataset to study the impact of climate stress on crops, testing of crop model performance, and assess
productivity in relation to environmental impacts. They can be retrieved by the following links:

i AgMERRA: https://data.giss.nasa.gov/impacts/agmipcf/agmerra/

ii. GGCMI; https://data.agmip.org/cropsitedb
FLUXNET is a global network of micrometeorological tower sites that measure various atmospheric

and ecosystem variables, including carbon dioxide, water vapor and energy fluxes. These
measurements are valuable for studying the physiological responses of crops to environmental
stress. There are hundreds of sites monitoring all over the world with a huge wide network. Some
potential crop sites could be Groningen, Netherlands (Wheatfields), El-Saler Sueca, Spain (Rice and
rainfed crops), Gebesee, Germany (cereals, potato, sugarbeet) Roskilde, Denmark (Wheat and
Maize), Oensingen, Switzerland (intensive crop rotation), Lonzee Belgium (rotational cropping
system), Lamasquere and Aurade, France (maize, wheat, rapeseed), These sites can give
micrometeorological, crop rotation, soil moisture, vegetation parameters information on a large
temporal scale. ICOS Observational data product on Summer 2018 Drought in Europe compiled from
52 stations in FLUXNET (https://www.icos-cp.eu/data-products/YVR0-4898) is also available and can
be used for crop stress product validation.

The Phenocam network consists of cameras placed in various agricultural ecosystems in America.
These cameras capture high-frequency images of vegetation, allowing researchers to monitor
changes in crop phenology and assess stress responses. Phenocam Dataset v2.0 provides a time
series of vegetation phenological observations for 393 sites and products consisting of 1783 site years
of observations across diverse ecosystems of the world (mostly North America) from 2000-2018. This
data can be used for phenological model validation and development from this link
https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V2.html . Camera images are also available
by university of Seville over rice crop fields.

Agricultural research stations and universities often conduct field experiments to study crop stress
responses to different factors, such as drought, nutrient deficiency, and pests. Data from these
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experiments can be valuable for understanding crop stress mechanisms, such as Rothamsted
Research station (https://www.rothamsted.ac.uk/north-wyke-farm-platform). There could be
reproducible controlled experiments that can be used to evaluate the intensity and duration of
exposure to a single or multiple stressors (Tirado et al. 2021). Care is needed as some of these data
may not be very useful because several stress exposure situations cannot be replicated in an
experimental setting, sometimes the stressor is hard to manipulate, or the species are particularly
challenging (Grieco et al. 2022a). However, their field measurements of leaf or canopy reflectance
can be used as calibration data to test airborne and satellite-based imaging procedures (Laroche-
Pinel et al. 2021).

3.4 Key Crop variables for stress monitoring

Some key remote sensing variables that can be gathered from different RS and ground resources:

1.

Above-ground biomass: advanced remote sensing techniques, such as LiDAR (Light Detection and

Ranging) and synthetic aperture radar (SAR), are now being used for estimation of AGB, especially in

forests and areas with complex vegetation structures. These techniques provide three-dimensional

information about vegetation structure, which can improve AGB estimation accuracy. Regression
models, such as linear regression or machine learning algorithms, are used for establishing statistical
relation between sensor-based vegetation indices and ground based AGB measurements such as
biomass harvesting, allometric equations, or forest inventory plots.

Leaf Area Index: LAl is an essential vegetation parameter that quantifies the total leaf surface area
in a unit area of land or canopy. It can be measured through both remote sensing and in-situ
methods. It is crucial for assessing crop stress because it provides insights into the vegetation's
health, growth, and response to environmental conditions. It is measured through various ways such
as

2.1. LAI-2000 Plant Canopy Analyzer measures the amount of photosynthetically active radiation
(PAR) both above and below the canopy. It calculates LAl by analyzing the ratio of these
measurements.

2.2. Hemispherical Photography cameras capture hemispherical images of the canopy, which can be
used to calculate LAl based on the proportion of the hemisphere covered by leaves. This method
provides a visual representation of the canopy structure.

2.3. LIDAR (Light Detection and Ranging): LIDAR data provides high-resolution 3D information about
canopy structure, including leaf distribution. LAl can be estimated from LIDAR data by analyzing
the point cloud information.

2.4. Hyperspectral Imagery: Hyperspectral sensors capture detailed spectral information, enabling
LAl estimation by analyzing the reflectance data at different wavelengths. This information can
be used to infer leaf density and cover.

2.5. Remote sensing platforms like satellites and aerial imagery are used to estimate LAl over large
areas. These images capture the reflection and absorption of different wavelengths of light,
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which are used to derive LAl values. Sensors on satellites such as MODIS, Sentinel and Landsat
are freely employed for this purpose.

3. Crop inclination angle: Crop inclination angle, also known as crop lean or lodging angle, is the angle
at which the crops lean or tilt in the field. It can be measured both through remote sensing and in-
situ methods. Specialized instruments like clinometers or inclinometers, sometimes they are called
tilt meters, a tilt sensor or slope gauges can be used to measure the inclination angle more precisely.
These devices are placed on or near the crop and provide an angle measurement. Drones equipped
with cameras and sensors capture high-resolution imagery of crops from different angles can be used
to measure the inclination angle of the crops. Crops that are inclined at a certain angle are at higher
risk of lodging, which is when the crops fall over due to various factors like wind, rain, or disease.
Understanding the inclination angle helps predict lodging risks and take preventive measures.

4. Leaf/Canopy nitrogen accumulation: Nitrogen is a critical component of chlorophyll and other leaf
pigments involved in photosynthesis, so changes in leaf nitrogen content can influence the way
vegetation reflects light in certain spectral bands which can be detected with several remote sensing
technologies such as multispectral or hyperspectral satellite or aerial imagery covering the area of
interest and wavelength range in the visible, near-infrared, and sometimes shortwave infrared parts
of the electromagnetic spectrum. Field measurements of leaf nitrogen content, often come through
leaf sampling and laboratory analysis, then statistical models or relationships between vegetation
indices and the actual leaf nitrogen content measured in the field are developed. Model calibration
is essential for accurate nitrogen estimation.

5. Canopy cover: Canopy cover is a direct indicator of the overall health and vigor of crops. A dense and
healthy canopy typically indicates that the crop is growing well and is less stressed. Conversely, a
sparse or thin canopy may suggest crop stress factors such as water scarcity, nutrient deficiencies, or
pest damage. Canopy cover information can be generated from coarse to medium satellite resolution
datasets.

6. Soil Moisture: Monitoring soil moisture levels can help detect early signs of drought stress in crops.
As soil moisture decreases, plants experience water stress, which can result in reduced growth, yield
losses, and crop failure if not addressed. Changes in soil moisture may also indicate areas where crop
health problems are developing. It can help in the early detection of diseases and pests that thrive
under certain moisture conditions. This can be measured from sensor probes and Microwave
sensors.

7. Chlorophyll content: Chlorophyll, light absorbing tissue, plays a critical role in photosynthesis.
Fluctuations in chlorophyll levels due to stress may lead to changes in the interaction between plants
and light. It requires hyperspectral image sensing in high resolution. Ground-based spectroscopy
instruments are often used to measure the spectral reflectance of vegetation in the field. It can be
measured in labs and deduced using handheld instruments such as SPAD and generated at landscape
scale from satellite sensors.

8. Fraction of absorbed photosynthetically active radiation (FAPAR): FAPAR is a critical parameter for
vegetation photosynthesis and primary production estimates. It can detect stress in crops before
visible symptoms appear. When crops experience stress due to factors like water scarcity, nutrient
deficiency, or disease, they may reduce their photosynthetic activity. This reduction in
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10.

11.

12.

13.

14.

photosynthesis can lead to a decrease in FAPAR, allowing for early stress detection. FAPAR over the
growing season provides insights into the temporal dynamics of crop stress. Remote sensing
satellites, such as MODIS (Moderate Resolution Imaging Spectroradiometer) and other VIIRS (Visible
Infrared Imaging Radiometer Suite), have spectral bands that are sensitive to vegetation and
photosynthetically active radiation. These bands capture the reflected sunlight from vegetation,
providing valuable information for FAPAR estimation. Ground-based instruments, such as
spectroradiometers, are used to measure the amount of photosynthetically active radiation at the
ground level.

Grain protein content: Grain protein content is typically measured through laboratory-based
techniques, primarily near-infrared spectroscopy (NIRS) and traditional wet chemistry methods.
Remote sensing technology does not directly measure grain protein content; however, change in
nutrient content at the leaf and canopy can be translated and linked to the content in the grain.
Maturity date: Delays or unevenness in maturity, as well as premature senescence, can signal various
stress factors, including water stress, nutrient deficiencies, temperature extremes, and pest or
disease damage. Monitoring crop maturity is essential for timely intervention and effective crop
management in response to these stressors. Change detection techniques applied to time-series
remote sensing data can identify changes in crop conditions over time. Sudden changes or anomalies
in crop phenology or growth patterns compared to historical data or expected growth stages can be
indicative of stress factors.

Evapotranspiration: ET is a direct indicator of water use by crops but cannot be directly measured
with satellite data. It can detect early signs of water stress in crops. When water availability is limited,
crops may reduce their transpiration rates, leading to lower ET values. Measuring ET can be done
using various methods, ranging from simple on-site measurements (eddy covariance, lysimeter, soil
moisture sensors) to more complex remote sensing techniques (energy balance models,
ecohydrological models etc.).

Gross primary production: Decreases in GPP can serve as an early indicator of crop stress. Various
stress factors, such as water scarcity, nutrient deficiencies, pest damage, and disease, can limit
photosynthesis and result in lower GPP. Photosynthesis models, Light use efficiency models, such as
the Farquhar model, can estimate GPP based on environmental variables, leaf-level data, and
physiological parameters. These models require detailed data on leaf characteristics and
environmental conditions. It can be directly measured by eddy covariance method.

Root weight: Estimating root biomass using remote sensing remains a challenge, advances in
technology and modeling techniques are improving our ability to indirectly assess root health and
stress. Remote sensing technologies, such as digital imaging and specialized root cameras, can be
used to capture images of roots within the rhizotron. Ground penetrating radar (GPR) uses radar
pulses to image subsurface structures, they can provide information about root density and
distribution in the soil profile. Deeper roots will access moisture at greater depths, which can be
detected by soil moisture sensors.

Panicle weight: Panicle weight can serve as an indicator of stress during the reproductive stage of
crop growth. It is an essential variable for crop stress monitoring, particularly in cereal crops.
Environmental stressors, such as drought, nutrient deficiencies, or pest damage, can reduce panicle

18| Page



EO4CEREALSTRESS

Reference: ESA AO/1-11144/22/I-EF

Number: D1.1 - Requirement baseline review document

Version: 2.0

Version 1 Date: 18 OCT 2023 Version 2 Date: 8 DEC 2023

size and weight. Measuring panicle weight directly using remote sensing is challenging because
panicles are typically located below the canopy and are difficult to distinguish from other plant
components. Crop growth models, such as the DSSAT (Decision Support System for Agrotechnology
Transfer) model, can estimate crop development stages and predict panicle weight based on weather
data, soil properties, and management practices. Combining remote sensing data with ground-based
measurements and modeling approaches can provide valuable information about panicle weight.
15. Carotenoids: Carotenoids, particularly beta-carotene, give plants their orange and yellow colors.
Changes in these colors can be visible indicators of stress. Under certain stress conditions, chlorophyll
degradation occurs, leading to a decrease in green pigments and an increase in carotenoid pigments.
This change in pigment composition can be monitored as an indicator of stress as deciphered in
Figure 4. Measuring carotenoids and xanthophylls in plants is typically done through laboratory-
based chemical analysis or spectroscopy e.g., High-Performance Liquid Chromatography (HPLC),
Spectrophotometry, Fluorescence Spectroscopy, Mass Spectrometry, Colorimetric Assays.
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Figure 4. a) is giving cross sectional view of mesophyll tissue, b) plant responses to different stressor at canopy
spectra c) is giving sensitivity of leaf molecules and tissue in the range of EMR spectrum detectable by
spectrometers.

Leaf spectroscopy provides a good basis for building spectral libraries. Canopy reflectance supports scale-up
the models of symptom detection calibrated at leaf scale towards broad-scale monitoring of crops. Figure 4
illustrates part of leaf and canopy spectra relevant to different stressors i.e., drought, salinity, herbicide,
nitrogen, ozone, and pathogen. Such as.
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1. In stress conditions, depleted chlorophyll can be detected in a broad spectrum as low reflection at

530-630 nm, and increased reflection at 700 nm in visible domain. Chlorophyll absorbs light in specific
spectral bands which hyperspectral sensors can better detect by analyzing reflectance spectra.
Reflectance around 960 nm is affected by cell elasticity, which decreases when the plant is subjected
to drought. Stomatal closure can raise leaf temperature and it can be seen in the infrared range.
The blue and red regions can be indicators of salt stress and are useful in characterizations of
chlorophyll content, photosynthetic activity, and cellular architecture.

Salt stress causes closing and limiting of mesophyll stomata, or changes in cellular metabolism which
adversely impact photosynthetic processes (Sytar et al. 2017).

Changes in the leaf structure and moisture content are associated with a reduction in reflection in
the NIR region, which is also regarded as a reliable predictor of changes to canopy structure (Franke
and Menz, 2007).

Plant leaves become discolored and disfigured due to inadequate nutrition, it can be seen in the
visible and shortwave region (1325 — 1575 nm) owing to pigmentation changes and the yellowing of
leaves leads to higher reflectance in the green-red region (Li et al. 2020).

In necrosis state, reflectance increases in the visible range while in non-necrotic areas, the
reflectance decreases.

Nitrogen deficiency is the most studied stress followed by phosphorus, iron, and sulfur. Because it
directly affects plant productivity. As it affects only a part of the leaf (young or old), the resulting
symptoms become difficult to detect over a complex canopy with mixed leaf ages. For that reason,
the coupling of leaf- and canopy-scale measurements is often recommended. Plant response from
nitrogen deficiency can coincide with phosphorus deficiency, but it was possible to diagnose P
deficiency 15 to 24 days in advance at leaf scale using Independent Component Analysis (ICA) for
feature extraction.

Physical characteristics of leaves can also help in stress detection such as changes in tissue
morphology, cell wall characteristics, and epidermal thickness, influence the leaf's spectral
characteristics. These changes are mostly detected by lab techniques e.g., tissue sectioning, Scanning
Electron Microscopy, Transmission Electron Microscopy (TEM). However, UAVs can also provide
finer-scale data for more localized assessments of vegetation health and potentially detect changes
in tissue morphology.

3.5 Crop stressors, their effects, associated symptoms in crop traits, and
key measuring variables

Crop stressors can manifest in various ways, and their symptoms can be observed in different crop traits.
Some stressors and their effects are:

Soil waterlogging which is usually caused by severe weather conditions, such as flooding, heavy rain,
and storms. It can cause plants to suffer from water deficiency by blocking their stomata due to the
lack of oxygen (Kaur et al. 2020).

20| Page



EO4CEREALSTRESS

Reference: ESA AO/1-11144/22/I-EF
Number: D1.1 - Requirement baseline review document

Version: 2.0
Version 1 Date: 18 OCT 2023 Version 2 Date: 8 DEC 2023

e Severe drought stress causes the loss of leaf moisture resulting into wilting and curling of leaves, and
drooping of branches, followed by the degradation of chlorophyll levels and an overall reduction in
leaf surface area. In fact, minor to moderate drought conditions can affect the concentration of
carotenoids in plants.

e Salt accumulation causes degeneration of leaf tissue and changes the interactions between plants
and water and nutrients, resulting in a reduction of chlorophyll and disease resistance (Lassalle, 2021)
that causes subtle discoloration or yellowing of the leaves. It has been mostly addressed in grass and
shrublands under controlled environment studies (greenhouses).

e Heavy metals have long-lasting effects for example they are easily absorbed by plants leading to
inhibition of their growth. Moreover, the pollutants can also make their way into the food chain,
potentially posing grave health risks (\Wang et al. 2018). Metallic stress can affect plant metabolism,
mineral nutrient transport, and water uptake, and can alter pigmentation and leaf structure (Ruffing
et al. 2021). The heavy metal stress in rice plants minimizes water absorption and ion channel
function, because of which the plants usually suffer from water shortages and excessive amounts of
free proline accumulations, which measurement could be an indicator (Choudhary et al. 2007).

Both monitoring of nutrient deficiency and gas stress monitoring coincides in their reflectance, data
processing, and methods are quite similar, which could be beneficial. As with most of the stresses, common
plant symptom is increased reflectivity in green areas as chlorophyll levels are reduced (Goldsmith et al. 2020).
Moreover, changes in reflectance between species with different leaf morphologies may differ significantly.
Spectral signatures can measure and detect these stressors. Table 3 presents some common crop stressors,
their associated symptoms in crop traits, and key measuring variables with spectral signatures. This table can
assist in choosing future datasets to monitor key crop stressors and their associated measuring variables.

Table 3. describes associated symptoms, key leaf and canopy variables and detectable spectral signatures of
some prominent crop stressors.

Crop Stressor Crop Traits/Symptoms Key Measuring Variable Spectral Signature
Lodging Morphology, flattened or Canopy Height, light interception, Lower reflectance in NIR
bent canopy structure, leaf orientation (horizontal) and SWIR

shadowing, changes in
vegetation density
Nutrient Deficiency Growth and Maintenance, Chlorophyll content, lower reflectance in the
decreased chlorophyll  Photosynthesis Efficiency, Carbon red and blue
content, changes in leaf assimilation rates, nutrient uptake
structure and pigment efficiency

content

Drought Stress reduced leaf turgor, Canopy Temperature, reduced absorption in the
morphology, degradation of ~ Transpiration, Precipitation, NIR and SWIR, increased
chlorophyll levels, Radiation, Daily maximum and reflectance in the visible
decreased water content minimum Temperature, Crop portion
and changes in leaf angle. water stress Index, Leaf water

content, Chlorophyll content, LA,
carotenoids
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Salinity and Water Tissue degeneration, Chlorophyll and water content increased absorption in the
logging reduction of chlorophyll, NIR and SWIR
discoloration or yellowing decreased reflectance in
of the leaves the visible portion
Heavy metals Metabolism, mostly  Proline content, soil quality and Unique absorption bands
physiological changes in composition data, fluorescence in inthe visible or NIR regions
leaf  morphology and plant tissues for Pb and Cd
pigmentation, reduction in increased reflectance at
water and ions absorption, specific NIR wavelengths
stress-induced chlorosis for Cu
(yellowing  of leaves), Hg induce fluorescence in
spread not uniform across a plant tissues
field
Disease or Pest altered pigment texture and structure of plant variations in reflectance in
infestation concentrations, water stems and leaves the visible range, unique
content variations spectral features, dips, or
peaks at specific
wavelengths
Heat Stress High temperature Leaf Temperature, Chlorophyll High reflectance in the
conditions, changes in leaf content, water content, leaf longwave infrared (LWIR)
structure and pigments pigments region, some signatures in
visible and NIR, lower
reflectance in red and blue
changes in the position and
shape  of  absorption
features in SWIR.

All stressors do not affect plant reflectance exactly in the same way and at the same time, so they can be
distinguished by exploiting the time and amplitude differences of reflectance changes which can differentiate
among stressors. The specific spectral responses to crop stressors can vary depending on crop type, stress
severity, and timing of stress development. Spectral screening methods can disentangle abiotic and biotic
stress sources, most studies at this stage are still focused on a single stress level. Detection of coexisting
stresses remains challenging and under-explored. Combining data from optical sensors, such as multispectral
and hyperspectral imagery, with data from other sensors like thermal infrared, microwave, and LIDAR, allows
for a more comprehensive assessment of crop health. Integration is essential for gaining more accurate and
precise measurements and it will reduce errors and uncertainties in the results. Information from Sentinel-2
on soil moisture and vegetation indices can be combined with EnMap's hyperspectral data about crop
stressors at a more detailed level. Combining both data sources will provide insights into spatial variations in
crop stressors. Similarly, PRISMA's hyperspectral data, with its fine spectral resolution, can provide detailed
information about the biochemical and physiological status of crops. Merging PRISMA data with Sentinel's
multispectral data can allow frequent and wide area monitoring of crop health. However, combining data
from Sentinel, EnMap, and PRISMA, for crop stress monitoring requires careful calibration and correction to
ensure that the data from various sources are consistent, accurate, and compatible. It requires a series of
steps such as sensor-specific radiometric calibration, atmospheric correction, georeferencing, spectral band
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alignment, spectral smoothing, temporal alignment as well as sensor-specific noise and uncertainty
adjustment. Most importantly, data fusion techniques can merge information from different sensors into a
single dataset seamlessly are needed. This can involve using statistical or mathematical methods to harmonize
data. Then these sensors can complement each other in cross-validating and calibrating. This will ensure data
accuracy and reliability, which is essential for making informed decisions in crop stress management.

4. KEY METHODOGIES OF CROP STRESS DETECTION AND
MONITORING

Laboratory and field-based controlled experiments are the most common approach for assessing the response
of one or more crop species to single or several combined stressors, and for determining the influence of
environmental variables on this response. Lab-based experiments are reproducible and give a full control of
the stressor intensity, timing, and duration of exposure. Also, they are well suited for scaling-up the methods
from proximal leaf- and canopy-scale measurements to broad-scale imaging. For instance, by identifying the
wavelengths affected by the stressor one can create stressor-specific Vegetation Indices (VI), this method has
found to be suitable for heavy metals and salinity contaminations. However, several stress monitoring
methods have also developed without controlled experiments in field or imaging spectroscopy for pest
diseases; soil contaminates and natural ecosystems but mostly are not aimed for broad-scale monitoring.
Spectral data from remote sensing and ground-based sensors is increasingly processed and analyzed using
machine learning algorithms. These algorithms can identify patterns and correlations between various data
points, helping to detect and predict crop stress thereby being quite useful for pattern recognition, automated
detection, predictive modeling, data fusion and real-time monitoring. The integration of advanced
technologies and data-driven approaches continues to enhance our ability to monitor and manage crop stress
effectively.

The subsections below discuss various methods, including vegetation indices based empirical approaches
radiative transfer models (RTMs), machine learning, and deep learning, for monitoring and managing crop
stress.

4.1 Deriving sensor-based crop stress indices

Multispectral sensor-based crop stress indices are valuable tools for monitoring crop health and identifying
stress factors such as drought, nutrient deficiencies, pest infestations, or disease outbreaks. The choice of
index depends on the specific crop, the type of stress being assessed, and the availability of multispectral data
as shown in table 4. For example, Sentinel 2 based Canopy Chlorophyll Content Index (CCCI) has been used
for estimating chlorophyll content in maize. The NDVI is a key indicator of crop stress, as it reflects changes in
vegetation density, photosynthetic activity, and overall health. Decreased NDVI values can indicate stressors
like drought, disease, or nutrient deficiencies. Enhanced vegetation index (EVI) is an improvement over NDVI
that corrects for atmospheric influences and enhances sensitivity to changes in vegetation canopy. NDWI
which is sensitive to changes in water content in vegetation, can be used to detect water stress and areas
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affected by flooding or waterlogging. LAl is valuable for understanding crop growth and stress. A decrease in
LAl can be indicative of stressors such as drought or pest infestations. New indices are developing with
emerging sensor technologies like the indices created by the red edge (RE) bands (680-780 nm) which are
useful to enhance the precision of the estimates. Cui et al. (2019) succeeded in increasing the accuracy of
predicated LCC by proposing a new VI called red edge chlorophyll absorption index (RECAI) and integrating it
with classical VI (TVI). Also, short wave Infrared domain directly and Red-Edge bands can be indirectly
correlated with water status by affecting chlorophyll concentration. Currently multiple indices in combination
are used to gain a more comprehensive understanding of vegetation characteristics and conditions. Further,
temporal analysis of spectral indices can monitor the progression and persistence of stressors and can provide
insights into the dynamic nature of crop stress. Table 4 shows some key indices specific to certain stressors,
they can be used as single or in merger for single or multiple stressors.

Table 4. List of key spectral indices and their application for crop stress detection.

Formula
(NIR - Red) / (NIR + Red)

Application
Drought and Nutrient deficiency

Vegetation indices

Normalized difference Vegetation
Index (NDVI)
Enhanced Vegetation Index (EVI)

2.5*((NIR-Red) /(NIR+6*Red-7.5
* Blue + 1))

Used for monitoring the condition of
vegetation, especially in complex
canopies or where vegetation stress
may be a concern

Water Stress Index (WSI) ((SWIR - NIR) / (SWIR + NIR)) For water stress detection

WDI = PET — AET

ET calculation using Penman-
Monteith equation, the Thornthwaite
equation, or the Hargreaves-Samani
method.

(RedEdge - Red) / (RedEdge + Red)

Water Deficit Index (WDI) for assessing water stress or drought

conditions

detect nutrient deficiencies and

disease stress

Chlorophyll Content Index (CCl)

Soil Adjusted Vegetation Index (SAVI
or SAVI2)

SAVI = ((NIR - Red) / (NIR + Red + L)) *
(1+1)

used for monitoring vegetation
health and detecting changes over

L = soil adjustment factor

SAVI2 = ((NIR - Red) / (NIR + Red + L1))
*(1+12)

L1, L2 = constants for soil adjustment
factor

time particularly in agricultural and
arid regions where soil brightness
affects vegetation index values.

(Tc - T_max) / (T_max - T_min)

Tc = current temperature of the
vegetation (e.g.,, from thermal
infrared data)

T_max = maximum temperature for
healthy plant

T_min = minimum temperature for
healthy plant

vegetation temperature condition
index (VTCI)

assessing the impact of factors like
drought, disease, or environmental
stress on vegetation temperature
condition
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Radar Vegetation Index (RVI)

(o_vwv-0_hh)/(o_vv+ao_hh)

o_vv = radar backscatter in the
vertical polarization (VV) channel.
o_hh = radar backscatter in the
horizontal polarization (HH) channel.

for vegetation analysis in challenging
environmental conditions (clouds)

Crop Water Stress Index (CWSI)

CWSI = (Tc-Te) / (Tc - Td)
Tc=canopy T

Te =reference T for well-watered crop
Td = Dewpoint T

Used for monitoring crop water
stress levels and guiding irrigation
management decisions.

Red Edge Chlorophyll Absorption
Index (RECI)

(NIR/Red Edge) - 1

for assessing chlorophyll content and
plant health

Normalized Difference Red Edge
(NDRE)

(NIR - Red Edge) / (NIR + Red Edge)

for detecting subtle changes in
chlorophyll content and can reveal
early signs of stress

Green Normalized difference  (NIR - Green) / (NIR + Green) for detecting stress in crops with
Vegetation Index (GNDVI) senescing or yellowing leaves

Temperature vegetation dryness TVDI=VTCl * NDVI for combined effects of temperature
index (TVDI) and vegetation health on water

stress

Plant Stress Index (PSl)

PSI = (R-NIR)/ (R+ NIR) * (R - SWIR) /
(R + SWIR)

to assess plant health and stress
levels.

Normalized difference Water Index
(NDWI)

changes in water content in

vegetation

photochemical reflectance index

(PRI)

PRI = (p 531-p 570) / (p 531 + p 570)
p = reflectance value at 531 nm and
570 nm wavelength in the green
region?!

sensitive to changes in chlorophyll
content and the xanthophyll cycle,
due to factors like water stress, light
stress, or nutrient deficiencies

Soil Moisture Index (SMI)

SMI = (Current VMC - Wilting Point) /
(Field Capacity - Wilting Point)

VMC = Volumetric water content
expressed as %

help identify areas of water stress or
excessive moisture

Meris Terrestrial Chlorophyll Index
(MTCI)

MTCI = (p800 - p680) / (p800 - p670)
p = reflectance values at specific
wavelengths (800, 680 and 670 nm) in
the NIR and red regions. 2
(https://www.indexdatabase.de/db/i-
single.php?id=169 )

Sensitive to variation in chlorophyll
content

Sometimes, selecting the right indices is crucial because different stressors may exhibit unique spectral
signatures. Like, changes in canopy temperature are not just in response to biotic stresses but can be due to
abiotic stress. Nitrogen deficiency (N) and water stress (drought and salinity) are the most prevalent limiting
conditions for crop production, and they commonly co-occur. Using crop water stress index (CWSI) and water

! The specific bands may vary based on the band combination of each sensor or instrument.
2 The specific bands may vary based on the band combination of each sensor or instrument.
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deficit index (WDI) together can estimate the physiological impacts of water stress and N nutrition separately,
and their interactive effects can also be addressed (Zhao et al. 2022). Most of the spectral indices are not able
to distinguish between short- or long-term drought stress, for which hyperspectral signatures can be useful,
because they provide a much finer level of spectral detail compared to traditional multispectral data. Short-
term drought stress may primarily affect the upper canopy, leading to specific changes in chlorophyll content
and water content. On the other hand, long-term drought stress can cause more significant structural changes
within the plant, leading to altered lignin and cellulose content. Hyperspectral data can capture these nuanced
differences. Water-deficit has been subject to numerous studies for decades from small-scale greenhouse
trials with individual plant pots and various levels of irrigation based on the soil's field capacity to the species'
needs in irrigation at large scale. Monitoring water-deficit from hyperspectral data typically follows three
different approaches [1] detecting alterations in leaf water content through developing Vs from leaf and
canopy spectra to establishing a threshold and linking it to regression models,[2] Using ML regression
algorithms for predicting physiological parameters affected by water deficiency, such as leaf water potential,
stomatal conductance, and non-photochemical quenching. [3] Through VIs and ML tracking early alterations
in leaf pigments and plant development (e.g., LAl, ground cover) resulting from water-deficit.

4.2 Feature Extraction and Feature Selection

Feature extraction and feature selection are two essential techniques in dealing with spectral data, as they
help in reducing the dimensionality of sensor’s data, enhancing the quality of information, and improving the
efficiency of data analysis. Extraction involves transforming raw data into a set of meaningful and informative
features. This process aims to highlight the relevant information in the data while reducing redundancy. While
selection involves choosing a subset of the most relevant features from the original dataset. The purpose is to
eliminate irrelevant or redundant features. The most used techniques are principal component analysis (PCA),
Partial Least Squares Regression (PLS), and linear discriminate analysis (LDA). PCA is primarily a dimensionality
reduction technique. It identifies and transforms correlated variables (features) into a new set of uncorrelated
variables called principal components while retaining as much of the original data's variability as possible.
These components capture the most variance in the data. PLS, unlike PCA, is more of a feature selection and
regression technique. It finds a set of orthogonal factors that explain the maximum variance in the response
variable (dependent variable) by modeling the relationship between features and the crop response. It selects
a subset of features that contribute the most to predicting the targeted stress. LDA is another feature selection
technique primarily used in the context of supervised classification. It finds the linear combinations of features
(discriminant functions) that maximize the separation between different classes that could be stress levels. It
is used for pattern recognition, classification, and reducing the dimensionality of feature space while
enhancing the class separability. It helps identify the most discriminative features. However, algorithms based
on metaheuristic approaches such as genetic algorithms (GA) are gaining ground in the field of feature
selection. The features are then used in the training phase to build the ML model.

These methods are common in hyperspectral remote sensing in which its better helps in identifying the
characteristic spectral bands sensitive to material concentration in plants, and thereby establishing the
relationships between plant response and environmental stress (Herrmann et al. 2010). The preprocessing of
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spectra applying techniques such as Continuum Removal (CR), Multiplicative Scatter Correction (MSC). The CR
eliminates the background signal or "continuum" from a spectrum that is unrelated to the crop physical
properties of interest, leaving only the relevant spectral features. Other technique, MSC normalize spectral
data by fitting a model to the measured spectrum and dividing the spectrum by this modeled scatter
component. This process helps to reduce unwanted spectral variability and scatter in the measurements.
These preprocessing techniques are critical for improving the quality of spectral data, reducing noise, and
making it more amenable to analysis and further processing. There can be two ways of processing spectra,
either integrating complete reflectance directly into machine learning algorithms, or converting spectral
signatures into abstracted variables. The former method complicates choosing optimal wavelengths for
monitoring a particular stressor. Therefore, spectral signatures must often be converted into abstract
variables, such as principal components, to reduce dimensionality or select features. Or developing spectral
reflectance indices (SRIs) that are related to plant characteristics, such as chlorophyll and water content, can
be useful for subsequent analyses to assess plant status. In fact, indices based on WC, photosynthetic
efficiency, pigment content, and red/NIR reflectance, and their driven regression models (SRI (spectral
reflectance indices) based models) compared to machine learning methods like PLS that uses all available
wavelengths including noises, are better in predicting physiological traits based on hyperspectral data.

The wavelet transform (WT) method is one of the viable methods for analyzing the hyperspectral spectrum
that converts the original reflectance spectrum into coefficients resolving at high scales (e.g., small narrow
bandwidth absorption features) and low scales (e.g., broad absorption features). Other examples are
successive projections algorithms (SPA), Recursive Feature Elimination (RFE) and ICA. SPA is widely used in the
wavelength selection of spectral data. Its advantage is extracting several wavelengths from the whole band in
faster and efficient way, which eliminates the redundant information in the original spectral matrix. It starts
with an empty set of selected features and iteratively adds one feature at a time to the selected set. At each
step, the algorithm selects the feature that provides the best discrimination between classes or maximizes
some relevant criterion. This process continues until the desired number of features is reached or a predefined
stopping criterion is met just like forward selection. RFE starts with the entire feature set and repeatedly trains
a model, such as a machine learning classifier, and removes the least important features. This process
continues until the desired number of features is reached or a predefined stopping criterion is met. Thereby
it eliminates the redundancy of features, select the optimal feature combination, and reduce the feature
dimension. Like SPA, RFE also a type of wrapper method. They can be computationally intensive, especially
for large feature sets, However, their accuracy for hyperspectral data is comparable in lodging stress detection
(Sun et al. 2023). Unlike them, ICA can separate a set of observed mixed signals into statistically independent
and non-gaussian source signals or components assuming that the observed signals are linear combinations
of these hidden source signals but with different mixing coefficients.

Feature selection plays a vital role in machine learning as it helps determine the best set of features to create
an effective machine learning regression MLR model. It is more advisable to first evaluate the plant's spectral
signature to identify the level of stress at which the plant has been exposed, deriving from graphical analysis
of leaf and canopy spectra. Later, dividing data analysis into three general approaches: statistical analysis,
prediction models, and classification models. In this step, multiscale spectral indices are more appropriate as
compared to indices based on a single scale. The reason is leaf-scale hyperspectral measurements are less
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sensitive to external conditions such as lighting, climate, and humidity when compared to canopy-scale
measurements. Leaf scale measurements reflect the effect on leaf biochemical characteristics. While canopy
scale studies assess the effect on the structure of plants. Thus, combining multiscale spectra will reduce
inherent bias in scale transferability.

4.3 Deriving Crop traits from Radiative Transfer Models

Compared with Vls retrieval directly from satellite, RTM have clear advantages for global applications, because
they are based on physical laws and therefore generally applicable. They are mainly used for physical based
retrieval of crop characteristics for improved quantification of their responses to environmental changes.
RTMs allow the conversion of remote sensing signals into valuable vegetation biophysical information, which
is used for analysis with other datasets. They can be simplified using tools such as Simulated Look-Up Tables
(LUT) and trained Artificial Neural Networks (ANN) however simplification may lead to some loss of accuracy.
Mostly RTMs are complex and nonlinear, their simulation shows quantitative relationships between plant
biochemical parameters and leaf/canopy spectra. Also, it helps in investigating plant physiological changes
with environmental conditions and can detect alterations in leaf/canopy structures and their biochemical
parameters through reflectance and transmittance signals. They considered better than VI based regression
models. RTMs can be used to monitor various aspects of crop health, including chlorophyll content, leaf area
index, and vegetation cover. To retrieve plant variables, the RTM inversion scheme needs to be applied to the
reflectance data. The inversion gives best match between a simulated and measured reflectance spectrum.

Among RTMs, The PROSPECT model and its improved versions are most widely used RTM that can accurately
simulate radiative transfer in leaves. Initially PROSPECT model was simple and required only three input
parameters: structure parameter (N), chlorophyll content (Cab), and equivalent water thickness (Cw). It is
advanced to the PROSPECT-4 model capable of simulating directional-hemispherical reflectance and
transmittance for a single leaf. It is further optimized with additional parameter Cm (dry matter) for simulating
EMR absorption and reflectance through internal parts i.e., cellulose and lignin it was further upgraded to
PROSPECT-5 to separate chlorophyll into chlorophyll and carotenoids at tissue level which is validated through
several independent datasets (Feret et al. 2008). PROPECT-D model formed with addition of anthocyanin in
PROSPECT-5 along with chlorophylls and carotenoids for the dynamic simulation of leaf optical properties
throughout a complete lifecycle (Feret et al. 2017). However, the most recent PROSPECT PRO allows for
decomposition of leaf dry matter into nitrogen-based proteins and carbon-based constituents and is capable
of modelling leaf proteins as well as cellulose, lignin, hemicellulose, starch, and sugars (Feret et al. 2021).
PROSAIL, which is an integration of the leaf level PROSPECT model and canopy-level SAIL (Scattering by
Arbitrary Inclined Leaves) model, is also a very common leaf and canopy RTMs. Both have continuously been
revised and improved. For example, 4SAIL2, which is an amended version of the turbid medium SAIL model,
simulates the top of the canopy reflectance. This model is a function of a series of variables: The fraction of
brown canopy area (fB), the dissociation factor (D), hotspot (hot), tree shape factor (Zeta), crown cover (Cv),
leaf area index (LAI), and leaf inclination distribution function (LIDF a and b). PROSAIL a 1D model is more
suitable for crop and grass than forest canopies because it assumes that a vegetation canopy is a turbid
medium. Due to its simplicity and reasonable accuracy, it is suitable for satellite applications. Another RTM

28| Page



EO4CEREALSTRESS

Reference: ESA AO/1-11144/22/I-EF
Number: D1.1 - Requirement baseline review document

Version: 2.0
Version 1 Date: 18 OCT 2023 Version 2 Date: 8 DEC 2023

model example is SPART in which PROSPECT-D and SAILH with hotspot effects is used (Feret et al. 2017). It
includes the absorption of chlorophylls, carotenoids and anthocyanins pigments and requires the content of
these leaf pigments, senescent materials, water content, dry matter, and leaf internal structure as input.
SPART can up-scale leaf optical properties (i.e., leaf reflectance and transmittance) to canopy optical signals
by considering the canopy architecture. Some of the RTM models and their application in crop stress
monitoring is shown in Table 5.

Table 5. Some common radiative transfer models used in crop stress studies.
Radiative transfer models Function Usage

Soil Leaf Canopy [PROSPECT 4 simulates canopy reflectance

leaf RTM, 4SAIL2 canopy RTM, over the spectral range [400 and

Soil Model Hapke] 2500 nm] with a spectral
resolution of 1 nm.

Quantifies fCover by simulating
reflectance by most of the input
variables (e.g., chlorophyll, water
content etc.)

require less parameters

Discrete anisotropic radiative simulates multiple scattering in Used for spatially heterogenous
transfer DART heterogeneous 3-D scenes. dense canopy

require a higher number of input
variables

PROSAIL [PROSPECT D —leaf RTM requires only a few input Used for retrieving green fraction
and the canopy bidirectional variables. (GF), LAIl, LCC and canopy

reflectance model (4SAIL)] especially  efficient to large chlorophyll content (CCC)

images
Soil Canopy Observation of Simulates solar-induced Used for homogenous complex
Photosynthesis and Energy fluxes chlorophyll fluorescence (SIF), multilayer canopies, investigates
SCOPE [ seven RTMS -one for energy balance fluxes, vegetation physiology under
leaf, 5 for whole stand, one for various weather conditions

gross primary productivity (GPP)

il BSM
soil BSM] and directional thermal signals

Regarding RTM application, the first synthetic dataset is prepared for model validation, sensitivity analysis,
training of machine learning model and algorithm development. It is comprised of information about sensors,
vegetation, soil, and atmosphere e.g., soil properties, leaf properties, canopy structure, sun-observer
geometry, and the corresponding TOA radiance. The choice of RTM varies by different scenarios such as
PROSAIL used for soil and canopy characteristics, MODTRAN for simulation of atmospheric conditions. To
make the synthetic dataset more realistic, some noise, random variations and uncertainties are added to the
simulated measurements. Prior to use as RTM input, synthetic data is first tested and validated with ground
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dataset to ensure its accurate representation of crop stress scenario. Some common parameters used in RTMs
are Optical Thickness (t), Single Scattering Albedo (w0), Phase Function (P(8)), Albedo (p), Reflectance (R) and
Transmittance (T), Absorption Coefficient (a), Leaf Area Index (LAI), Leaf Inclination Distribution Function
(LIDF) and atmospheric parameters include atmospheric pressure, temperature, humidity, aerosol properties,
and gas concentrations. RTMs can be highly specialized for applications, such as atmospheric radiative
transfer, vegetation modeling, or crop remote sensing, which further influences the parameter choice.
Accurate initial parameter values can improve the accuracy of the RTM's simulations. This is especially
important when fine-tuning RTMs for crop applications or when using them for inversion (retrieving model
parameters from observed data), some parameter used as input and can be retrieved from RTMs are provided
in Table 6.

Table 6 List of the parameters used often in RTM models, ranges and initial values may differ case by case
depending on the specific application, the target material or medium, and the instrument or sensor being
used.

Parameter Description Unit Range Initial value

(o) Soil spectral latitude Degree [-30,30] O
Soil spectral longitude Degree [80,120] 100

SMp Soil moisture volume - [5,55] 20
percentage

Cab Chlorophyll a and b content  pg cm? [0,80] 40

Cdm Dry mass per unit leafarea  gcm™ [0,0.02] 0.01

Cw Equivalent water thickness cm [0,0.1] 0.02

Cs Senescent materials - [0,1] 0

Cca Carotenoid content ug cm? [0,30] 10

N Leaf internal structure - [1,4] 1.5
parameter

LAI Leaf area index m? m? [0,71 3

LIDFa Leaf inclination — [-1,1] -0.35
determination parameter a

LIDFb Leaf inclination — [-1,1] -0.15
determination parameter b
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AOT550 Aerosol optical thickness at — [0,2] 0.325
550 nm
uos3 Ozone content cm-atm [0,0.8] 0.35
UH20 Water vapour gcm? [0,8.5] 1.41

A significant challenge in applying RTM inversion mode is the issue of "ill-posedness" which means there can
be multiple different combinations of model parameters that can reproduce an observed spectrum. This
challenge complicates the accurate interpretation of remote sensing data and necessitates careful
consideration of uncertainties in the inversion process. It is resolved by various statistical means such as
numerical optimization, look-up table (LUT)-based inversion and hybrid approaches. All these approaches
have their own advantage such as Numerical optimization minimizes a cost function value between the
measured and predicted reflectance spectrum in an iterative manner. This method requires significant
computing power and is time-intensive if applied to a huge number of pixels. In contrast, the LUT-approach
uses a high number of simulations to produce several hundred or thousand reflectance spectra from
numerous combinations of input variables. Hybrid approaches combine the fast computation power of
machine learning and generalization level of RTMs. In this approach, RTM simulations are used as training
data, leaving ground measurements only for validation. Yang et al. (2021) provided an improved retrieval of
land surface biophysical variables from time series of Sentinel-3 OLCI TOA spectral observations by considering
the temporal autocorrelation of surface and atmospheric properties, this has reduced inversion problem —ill
posedness, in which multi-sensor integration takes place at the lower-level product of TOA radiance by using
SPART model, instead at the higher product scale (e.g., LAl and fPAR). Thus, retrieval of land surface properties
can be directly from OLCI TOA observations without atmospheric correction. In this way, the temporal
continuity of the land surface and atmospheric properties used as prior information reduces the ill-posedness
of model inversion problems and improves the retrieval accuracy. It helps to mitigate unrealistic short-term
changes in the retrieved variables (FAPAR, LAI).

Besides retrievals, RTM can have multiple advantages. They can be combined with crop growth model (CGM)
or process-based models, vegetation growth and prognostic phenology models (Fang et al. 2008) to get
information about how crop changes over time in response to environmental conditions. By using crop
models, RTMs can be trained, constrained, and the uncertainties in their biochemical retrievals can be reduced
likewise. It allows for better parameterization of the RTMs and helps to match model outputs with observed
data, leading to more reliable and meaningful results (e.g., Verrelst et al. 2015). Therefore, coupling of
Radiative Transfer Models (RTMs) with other models gives more comprehensive analysis and monitoring of
crop health. The Soil-Plant-Atmosphere (SPA) model, simulate water movement in the soil and its effect on
plant water stress its integration with an RTM simulates changes in soil moisture and its influence on canopy
reflectance and temperature, aiding in the detection of drought stress. Coupling with crop growth models like
DSSAT allows researchers to simulate crop development and stress responses such as crop phenology, leaf
area index, and nutrient uptake, helping to detect nutrient deficiencies or disease-induced stress. Coupling an
RTM with a regional climate model provide insights into how variations in temperature, precipitation, and
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solar radiation influence crop health. Machine learning models, such as neural networks or random forests,
can be trained using synthetic data generated by RTMs to detect crop stress from remotely sensed imagery.
The combination of RTMs and machine learning enables the development of accurate stress detection
algorithms. In some studies, LUT approach is used in which a discrete sample of model input is extracted from
the full parameter space, and the corresponding model output is simulated by the forward radiative transfer
model. Some studies used emulators as facilitators for developing simple relationships between model input
and output by relying on machine learning techniques (Berger et al. 2020; Verrelst et al. 2019).

4.4 Applying Empirical Regression Models

Empirical regression methods use a learning dataset to calibrate a parametric or non-parametric model. The
learning dataset consists of independent variables and dependent variables, where the independent variables
can be spectral reflectance from multispectral/ hyperspectral image, vegetation indices, principal
components, and even contextual descriptors. Dependent variable could be cropping performance related
indicators like GPP, Yield, Biomass, Productivity and so on. The learning data can be generated using field
experimental measurements of crop stress related variables, e.g., chlorophyll content, water content, LAl etc.
In such cases, the resolution of the outcome stress variable map is determined by the scale of experimental
measurement, for instance, measurements taken at a 10 m by 10 m sample plot, resulting in the degraded
resolution of aerial mapping, if the parametric approach is used, non-parametric models have gained more
attention (Zhang et al. 2021). Or otherwise the original resolution can be maintained through a wall-to-wall
UAV map which requires rigorous and challenging co-registration between the two data sources i.e., satellite
images and airborne images. The other challenge is empirical functions are constrained by the
representativeness of the calibration dataset over the targeted areas that are related to atmospheric
conditions, sun-sensor geometry, land cover (vegetation type, tree species even crop cultivar), phenological
stages, and topography (Baret and Buis, 2008). So, when an empirical inverse model is calibrated over one
scene applied to a new scene, it usually requires re-calibration based on the learning data of the new scene.
In parallel, processed spectral signal-based regression models have a wide range of applications, including
estimating crop yields, and monitoring soil properties. Once spectral data is collected from appropriate
sensors, instruments, or spectroscopy techniques across a range of wavelengths. This data is preprocessed by
various techniques like baseline correction, noise reduction, and wavelength selection to improve data
quality. Then relevant features or spectral indices from the processed data are extracted for regression tasks.

Regression models are versatile tools applicable to various scenarios with both small and large numbers of
variables. The choice of the specific regression model depends on the characteristics of the data and the goals
of the analysis. For instance, a study by Asargew et al. (2024) conducted a glasshouse experiment to
investigate changes in the linear relationship between stomatal conductance (gs) and photosynthesis (An)
owing to water stress in rice and the association with soil moisture content. They employed a linear regression
model- Ball-Woodrow-Berry to identify water stress in rice crops by analyzing relationship between gs and An.
They found severe water stress had a significant effect and can reduce the slope of the linear relationship
between gs and An by 30 % compared with normal water stress. Only in severe stress conditions, An and gs
32|Page



EO4CEREALSTRESS

Reference: ESA AO/1-11144/22/I-EF
Number: D1.1 - Requirement baseline review document

Version: 2.0
Version 1 Date: 18 OCT 2023 Version 2 Date: 8 DEC 2023

were strongly correlated with soil water content. For a relatively complex nature of the interactions with large
set of variables polynomial regression technique is better. For instance, Gomez et al. (2022) studied water
stress mechanisms in commercial crops (pineapple) to explore the influence of plant metabolites on shoot
biomass in response to water stress. The statistical analysis of relationships conducted between commonly
used biochemical markers of water stress and growth in crops. The study highlighted the efficacy of
polynomial regression in quantifying the influence of plant metabolites (chlorophylls, carotenoids, phenolics,
and aldehydes) on shoot biomass in response to water stress (Gomez et al. 2022). When dealing with a larger
number of variables, multiple regression or other advanced techniques can be employed. Such as an airborne
survey over an experimental farm in Italy used airborne hyperspectral images to assess maize fields with
different irrigation levels. Field measurements of crop indicators like leaf water content, chlorophyll
fluorescence, leaf temperature, and leaf area index were then analyzed using an ordinal logit regression model
(an extension of binary logistic regression to handle more than two ordered categories)3. Results indicated
Photochemical Reflectance Index (PRIs70) has strong relationships with LAI. PRI can be used in mapping stress
classes and optimizing irrigation management in precision agriculture (Rossini et al. 2013). These examples
illustrate the versatility of regression models in leveraging data of different types for crop stress detection and
monitoring.

Some complex regression models are:

1. Partial Least Squares Regression (PLSR): Effective for dealing with multicollinearity in
spectral data.

2. Support Vector Regression (SVR): Useful for modeling complex relationships.
Random Forest Regression: Robust and capable of handling high-dimensional data.

Because SVM and RF are non-linear, able to learn complex relationships and form high-dimensional datasets
While using these high-performance models, the selected dataset is divided into training and testing subsets
to evaluate model performance. This division of dataset is not needed if performance check is done through
k-fold cross-validation in which only one set of observations, is resampled automatically and iteratively that
help in assessing model generalization. Hyperparameter tuning of the regression model is important for
accurate results. It is done by adjusting parameters related to model complexity, regularization, or kernel
functions (for SVR). Once the regression model is trained and evaluated satisfactorily, it can be deployed for
making predictions on new, unseen spectral data. It is necessary to periodically retrain or update the
regression model as new spectral data becomes available or as conditions change. However, low-quality data
can adversely affect model performance.

3 Ordinal logistic regression, also known as ordered logistic regression or proportional odds model, is a statistical
technique used for modeling the relationship between an ordinal dependent variable and one or more independent
variables. Ordinal variables are those that have a meaningful order but the intervals between the categories are not
necessarily equal. Model assumes that the relationship between the independent variables and the cumulative odds of
being at or below a particular category is the same for all levels of the dependent variable.
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4.5 Applying Machine Learning

Data-driven methods that include the development of vegetation indices in specific spectral bands and the
construction of machine-learning inverse models require large sample data through field experiments. Those
methods have certain shortcomings e.g., lack of theoretical support, low interpretability, lack of physical
explanations of light transfer mechanics in plant leaves, and low generalization. Therefore, it is important to
investigate the physical transmission of optical radiation in leaves, to gain a thorough understanding of the
mechanisms of interaction between plant leaves and optical radiation and thus to develop plant

physicochemical parameter detection methods with improved accuracies based on hyperspectral data.

Machine learning approach has overpassed VI-based traditional diagnostic methods in performance. Some of

the examples are:

1.

Classification models, which involve combining input variables to predict classes related to plant
condition (healthy/stressed). The labeled training data could be reflectance or transformed-
reflectance (derivative, continuum removed, etc.) data, VI, or biochemical parameters retrieved
by regression or RTM inversion. They can be assessed on a test dataset by comparing the
predicted and true classes. Such methods can be applied to new reflectance measurements to
predict plant stress but are skill- and computationally demanding.

Advanced regression models use same training datasets as classification model and can ingest
several inputs variables like classification models. They can predict a continuous response
variable such as the stressor itself (e.g., concentration of soil contaminants) or a biochemical or
physiological indicator of plant stress (e.g., pigment contents, stomatal conductance). However,
a common challenge to these methods is data dimensionality issue, the information in each
spectral region can be highly redundant, making it difficult to identify the most suitable bands to
monitor a given stressor.

Machine learning algorithms are being applied to remote sensing data for automated detection
and classification of crop stressors. These algorithms can process vast datasets, identify patterns,
and make predictions, enhancing the efficiency of crop monitoring and management. Several
ML algorithms exist that can detect stress at an early stage and can distinguish plant stressors
with similar effects on plant reflectance. Some can handle nonlinear relationships between the
stressor intensity and the spectral response of plants. Some non-parametric examples are Linear
or Quadratic Discriminant Analysis (LDA/QDA), Partial Least Square Regression (PLSR), Support
Vector Machines (SVM), Random Forest (RF), Elastic net (ENET) regression, and Neural Networks
(NNs). Their functional units and specific advantages are listed in Table 7.

Table 7. Examples of Machine learning algorithms, their functional use and advantage for crop stress

monitoring

Methods
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LDA linear combination of input variables into  maximizes the separability of plant health
a reduced project space classes
PLSR a series of principal components (latent Quantify plant stress
vectors) from the input variables
SVM Separate the plant classes (e.g.,, maximizes the margins of a hyperplane and
healthy/stressed) by defining a linear minimizes an approximation error
function that minimizes a cost function
RF averaging a series of independent decision handles nonlinear relationships and informs on
trees to model the relationship between the importance of each input variable
input variables and plant health classes
ENET (penal- Uses Ridge and Lasso regression performs variable selection under
ized least square multicollinearity
method)
NNs (Multilayer split layers in nodes which relate to those output layer returns the plant health (e.g.
Perceptron) of another layer, layer can be reflectance healthy/stressed)
data, VIs, or biochemical

Some simple and advanced machine learning models, such as multivariate linear regression, random forest,
artificial neural network, SVM, Gaussian process, and partial least square regression (PLSR), have been widely
used to retrieve agricultural variables from RS data with the input of multiple features or continuous
reflectance spectra (Schwieder et al. 2014). Nevertheless, training an SVM with high-dimensional data can be
extremely slow, while ANN is prone to overfitting, and the parameter setting in ANN is more complicated.
Compared to SVM and ANN, RF has proven to be a very robust machine learning algorithm for the retrieval of
vegetation parameters, like CCC (Abdelbaki, et al. 2021). it has a high accuracy nearly 97%, can run effectively
on huge datasets; is able to process input data with high-dimensional features. It can evaluate the importance
of each variable. It can obtain unbiased estimates of internally generated errors. It can also give good results
for the discrete values of inputs (Timsina et al. 2021).

ML techniques are also an efficient way to merge datasets of different natures, such as integrating in-situ data
(soil data, farming management practice data from field surveys, weather variables) with datasets from
various RS sources. It allows the complex relationship between variables to be statistically characterized and
permits real-time computations, which is of strong interest for agricultural applications. Most phenotypic
studies concerned with multispectral cameras use ML algorithms to develop the relationship between
vegetation indices and crop traits such as leaf area index (LAl), nitrogen content, and chlorophyll content.
They are now the long-lasting goals for RS applications in agriculture to be met. The rapid improvements in
machine learning and sensor technology have provided cost-effective and thorough crop assessment and
decision-making solutions. Machine learning techniques can process large hyperspectral data to detect subtle
changes in crop health caused by various stressors, providing valuable insights for crop management. Also
combining hyperspectral and meteorological data with machine learning improves crop yield predictions by
considering the effects of multiple stressors on crop development. From these integrations, decision support
systems can be developed using machine learning models by incorporating hyperspectral, environmental, and
RTM data to assist the user community in making informed decisions for crop stress management. Using pre-
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processed spectra and machine learning algorithms, drought detection can be achieved a very high accuracy
(Dao et al. 2021).

4.6 Applying Hybrid Retrieval Method

This section explores hybrid approach that integrates sensor data with complementary field data sources to
enhance stressor monitoring and prediction. Data integration of multiple data sources i.e., data from various
sensors, such as optical, thermal, and microwave, along with ground-based observations, weather data, and
soil information enhances the accuracy of stress detection and predictive modeling. A study by Fei et al. (2023)
showed that the use of multimodal data fusion and deep learning methods on UAV data resulted in good crop
yield prediction. In another study, Ahmed et al. (2021) used hybrid machine learning approach and considered
several soil management variables and harvest management features: Planting date and density, date of
nitrogen application (both at planting and side-dress application), grain yield, harvest key, fresh and dry
biomass, fertilizer rate, and nutrient uptake for nutrient stress management. Important is that these hybrid
methods should be portable and independent from field measurement (Asma and Thomas, 2022). Hybrid
approach leverages the strengths of different methods to address the limitations of individual techniques. In
fact, nonparametric hybrid approaches are found to be highly accurate for the quantitative assessment of
crop traits in optical remote Sensing. Most advanced crop-related research surrounds combining RTM and
machine learning (ML) methods in a symbiotic manner such as integrating shallow or deep neural networks
with RTM using remote sensing data to reduce errors in crop trait estimations that improve control of crop
growth conditions in very large areas and are serving many precision agriculture applications now.

However, hybrid methods can be classified into parametric or non-parametric based on their retrieval
approach. The advantages and limitations of a parametric and non-parametric hybrid method can be seen in
Table 8 which can help in choosing an appropriate approach in the project.

Table 8. advantages and limitations of parametric and non-parametric hybrid retrieval methods.

Hybrid Retrieval method Advantages Limitations and cautions
Uses physical laws Accuracy of results depend on
RTM model type and design of
LUT
Accommodated to any data type Needs knowledge for
with linear or nonlinear optimization and realistic results

Non-Parametric regression relationships

Trainable with full spectrum Model complexity increases as
information, band selection or model progresses
transformed spectrum

Perfectly implementing global
maps and faster in calculation
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Transparent inferential can give
information  for
assessing retrieval quality

uncertainty

Fast at calculating global maps
with perfect execution

Can handle high dimensionality
and large training data

Training s
expensive

computationally

Preserves physical principle

Accuracy of results depend on
RTM model type and design of
LUT

Absorption and

features

scattering
of spectrum to be

When using hyperspectral data,
spectral range should be chosen

Parametric

considered carefully to generate a complex or
simple VI

Statistical  relation  between Limited representatives of

variable and spectral response relation between VI and target

can be taken variable using curve fitting
function

Simple to apply and Uncertainty  calculation  not

computationally inexpensive

provided, so accuracy can be
challenged

Interpretation is straightforward

Covariate with other variables
related to absorption features is
not considered

Mapping crop traits over a large is
not easy

EO and in situ data integration can be done in several ways:

1. Feature Fusion: Combine extracted features from different sources into a unified feature space
for modeling. One example of feature fusion found in synergy of Sentinel-1 and Sentinel-2 Time
Series for Cloud-Free Vegetation water content mapping in which several multiple-output
Gaussian processes (MOGP) models evaluated to fuse efficiently Sentinel-1 (S1) Radar
Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a
dry agri-environment in southern Argentina in Figure 5.

37| Page



EO4CEREALSTRESS

Reference: ESA AO/1-11144/22/1-EF

Number: D1.1 - Requirement baseline review document

Version: 2.0

Version 1 Date: 18 OCT 2023 Version 2 Date: 8 DEC 2023

Qb 741 {1

[Fm = m =
I )
| 82 image collection i S1 image collection y
| 21 Google Earth Engine =
i s '
; Jupyter '
S’ ) BT i ,

1 [ vwe Modet spplying “ . GEE S e -
| S2-VWC-GP model Savehy-Govoy savoching M
: Invstowtiote (4 Qb 68 M
| ]
1

S1& S2 Imagery Acquisition

Time series data | ., Multi-Output Gaussian cH-2 Time series data
13y S2GPVWC Processes CH3 S1RVI

MOGP Error
Statistics

!é ' M/\i

| Selection

e oa Multi-Output Gaussian Processes Mapping

Cuntgeraton

Time series |MOGP input PRS-
maps

52 GP VWC

Time series
maps
S1aVI

51 RV Qo 88
51 RV Oetr 147

Figure 5. illustrates example of feature fusion for canopy water content mapping using time series of Sentinel
1 and 2 with machine learning technique — Multi output Gaussian process (Caballero et al. 2023).

2. Data Fusion: Merge data from different sensors and in-situ information at the data level, such
as fusing multispectral, hyperspectral, and thermal data for enhanced stress detection. One
exemplary application found in Gopi and Periasamy (2023)’s work in which MLR models are used
on the feature space derived from in situ and S1 SAR (L, S) bands by which enhanced soil moisture
product generated and linked to plant water content modelled by Water Cloud Model, the
resultant crop health schema with combination of MLR and WCM provided PWC and Soil
moisture maps for detecting healthy and stressed sorghums and cotton crops. Figure 6 illustrates
significance of non-parametric hybrid approach and its framework difference with a parametric
approach.
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Figure 6. a) Example of hybrid retrieval methodology and b) popularity of hybrid based nonparametric
methods [2002 — 2-22] (Source: Asma and Thomas et al. 2022) c) methodology design of parametric hybrid
method based on VIs and RTMs d) integrating RTM with machine learning methods as example of non-

parametric hybrid methodology.

3. Ensemble Methods: Utilize ensemble techniques like stacking or boosting to combine
predictions from multiple models trained on different data sources. This category application is
found mostly in crop yield predictions or selection of suitable cropping systems, but not for crop
stress monitoring as such. The gradient boosting decision tree (GBDT), random forest (RF),
extreme gradient boosting regression (XGBR), and a stacking ensemble ML algorithm have good
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performances in solving regression problems (Aldress et al. 2022), Figure 7. Zewei et al. (2023)
tested these ensemble methods on simulating soil salinity dynamics over cotton crops and
proved the ML models, especially the XGBR and stacking ensemble ML algorithm, are useful tools
to predict soil salinity, EC, cotton yield and ET. The use of the model is relatively simple, and the
accuracy and stability are satisfactory. They can be used for real-time prediction of soil salinity,
ET and cotton yield under drip irrigation in the future.

Models Ensemble Model

Non Ensemble Model

MLPNN, SVM-SVR,
and DT

Bagging Boosting

MLPNN, SVM-SVR,
and DT

Adaboost

MLPNN, SVM-SVR,
and DT

MLPNN, SVM-SVR,
and DT

Figure 7 indicates the type of ensemble models known to be the best data mining techniques
and their differentiation from other conventional ML techniques. (Aldrees et al. 2022)

4. Expert Systems: Combine domain knowledge via field sensors and rules-based approaches with
data-driven models to improve interpretability and accuracy. Its major example is Digital Twin
which is still developing by which farmers can manage operations remotely based on (near) real-
time digital information instead of having to rely on direct observation and manual tasks on-site.
An example is shown in figure 8. This allows them to act immediately in case of (expected)
deviations and to simulate the effect of interventions based on real-life data. Verdouw et al.
(2021) explain how Digital Twins can advance smart farming.

A well-designed hybrid retrieval method for crop stress detection can provide more accurate and reliable
results compared to using a single data source or method. It leverages the complementary information
available from multiple sources to enhance the monitoring and management of agricultural systems.
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up-to-date information about farm operations. (Verdouw et al. 2021)

Nonparametric nonlinear methods are more powerful in extracting information from subtle differences in
reflection by supporting covariance between biochemical and biophysical variables. Nowadays, deep learning
(DL), as extending machine learning, is starting to be explored for crop monitoring using hyperspectral images.
DL has the advantage of handling a large data size of training samples to possibly improve the targeted
variable. It can provide estimates of uncertainty and the use of the complete optical spectrum information. It
is gaining momentum recently for image classification also the convolutional neural network based on DL is
being applied widely. In the study by Chandal et al. (2021) a comparative assessment of three deep learning
models (Alexnet, GooglLeNet and Inception V3) is provided for identifying the water stress conditions of three
crops (maize, okra, soybean), in which GooglLeNet DCNN model is efficient classifier for the water stressed
conditions for different types of crops. This model can be used for real-time embedded image-based system
of detecting the onset as well as extent of abiotic stresses in crops. A recent review on deep learning-based
computer vision techniques by Orka et al. 2023 revealed that most of the work targeted various micro and
macronutrient deficiencies in crops covering rice and potassium shortage represent the most researched crop
and abiotic stress. Some are found on water-related stresses including drought and submergence, but no
research exists on the cognition of early indicators of water, heat stress or nutritional inadequacies. This
project can contribute to addressing the gaps in current research related to early indicators of water and heat
stress as well as nutritional inadequacies in crops, ultimately making a valuable contribution to the sustainable
crop production.

4.7 Best approach in developing new methods
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While developing new methods, the accurate monitoring of plant stress needs a proper understanding of data
collection, and analysis, which may vary depending on the conditions, the crop species, measured
characteristics, and the stage of growth. A thorough understanding of crop light interactions, sensors, imaging
platforms, and processing algorithms must be acquired to ensure that crop phenotyping meets the required
criteria. First there is need to identify the purpose of monitoring (precision farming vs. environmental
monitoring), the scale of monitoring (proximal vs. broad scale), the need for controlled experiments, and the
type of monitoring (qualitative vs. quantitative). This will determine the most suited processing approach to
maximize the accuracy of stress detection and quantification. For broad-scale monitoring, relevant
wavelengths linked to stressor-specific symptoms can help to develop descriptive variables for machine
learning models. Empirical regression models can be suitable for large-scale monitoring when a robust
calibration dataset is available for the specific region and conditions of interest. However, they may struggle
with extrapolation beyond the training data. On the other hand, RTMs are versatile and can simulate various
scenarios. They require accurate input parameters and can be computationally intensive. They are often used
in conjunction with other techniques for large-scale monitoring. Machine learning algorithms can handle a
wide range of stress factors and provide accurate predictions when properly configured. They may lack
interpretability, especially deep black-box models. They require substantial training data and can overfit if not
properly regularized. Also, model response accuracy truly relies on data quality and size (Barbedo, 2019). Deep
Learning is powerful for image-based monitoring, making it suitable for large-scale monitoring when a
significant amount of labeled image data is available. The best approach is to combine multiple techniques to
leverage their respective strengths in large-scale crop stress monitoring, ensuring both accuracy and
interpretability.

5. TEST AREAS FOR EXPERIMENTAL DATASET

The project will consider three major grain crops of the world: rice, wheat, and maize. They are staple foods
for billions of people and understanding how these crops respond to stress is vital for global food security.
They are not only consumed directly but are also used as feedstock for livestock and as raw materials in various
industries. Stress-induced reductions in yield can have widespread economic implications. Any threats to their
production could lead to food shortages and price spikes, affecting vulnerable populations the most. They
occupy vast agricultural lands, and their production often involves the use of pesticides, fertilizers, and
irrigation, which can impact ecosystems and water resources. Studying their responses to stress can help
develop more sustainable agricultural practices which can lead to the development of more stress-tolerant
varieties through breeding or genetic modification. Improved crop varieties can help farmers mitigate the
impacts of stress and increase overall crop yields.

Field protocols for measurements of different biophysical and biochemical parameters and stress conditions
are required in the test areas to understand the relationship between key stressors and their remote
signature. Our proposed test sites should cover a wide representation of different stress conditions. For which
a trade-off analysis required for the selection of the state-of-the-art methods including time series analysis,
RTM, machine learning, quantitative spectral analysis (e.g., spectral derivatives and continuum removal), and
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spectral indices as described in above sections. The knowledge gained on the cumulative effect of multiple
stressors using such multi-source and multi-model approach may also require cloud computing and HPC
framework. The datasets from in situ measurement of crop parameters and stress conditions, simulated data
using radiative transfer models, and existing data in different crop stress conditions will provide a complete
assessment of the cropping systems. A detailed cross comparison and verification would be needed in the
selection of final methods and algorithms. The resulting EO-based stress maps/products from test sites can
be cross compared and verified with simulated datasets generated by the machine learning or radiative
transfer model to gain a thorough understanding of the range of validity, limits, and benefits of the different
existing products.

This field scale investigations can be scaled up to regional scale analysis using regular RS monitoring data. But
the main requirement is, test sites should represent different stress conditions (nutrient stress, water and
heat stress and lodging) in cereal crops for testing the performance of various crop traits retrieval methods.
For testing the robustness of selected methods, validation data will be comprised of in situ measurement of
crop parameters and stress conditions, simulated data using radiative transfer models (RTM), and existing
data in different crop stress conditions. In this project, three pilot sites are consolidated on which a large set
of information is accessible and detailed measurements are available through various field campaigns.

5.1 Test site I - Rice cultivation in Andalusia, Spain

Andalusia, with about a third of all Spanish rice production, is the first rice producing region, although the area
dedicated to this crop varies considerably depending on problems in the availability of water for flooding.
Currently, the area under rice cultivation is close to 39,000 ha (Figure 9). This area uses different water sources
(water from wells, river channels) for irrigation that accounts for about 80% of total water withdrawals in the
region, out of which, 71% of irrigation water is derived from surface water, 28% from groundwater, and 1%
from non-conventional water resources (i.e., reutilisation, desalinisation). Drip irrigation systems cover 64%
of irrigated land, whereas sprinkler systems and surface irrigation span 13% and 23% of irrigated land,
respectively. Arable crops account for 30% of the agricultural water withdrawal in the region (mainly due to
rice and cotton production), followed by fruit trees (22%), olive trees (19%), and vegetables (10%). Rice
cultivation in Spain is limited to areas with high salinity and significant environmental restrictions, such as
deltas and marshes belonging to or close to natural parks.
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Figure 9. Types of Land use in Andalusia showing rice cultivation mostly in the west marked by red box (Source:
Pilar and Maria, 2019)

An extensive field campaign has been carried out recently in the summer of the year 2023 to characterize the
agronomic parameters of the AFR soils that can give information on stressors related to salinity, deficit or
excess of nutrients, and heavy metal toxicity. Field data is accessible from five different campaigns in line with
the Sentinel-2 acquisition dates and EnMap for the rice growing season (May — June 2023). Field
measurements of chlorophyll, LAl and reflectivity have been taken using SPAD, LICOR 2200-c, and ASD
FieldSpec 4 spectroradiometer during key growth stages of rice development (tillering, productive tiller critical
stage (N-n), jointing, booting, heading, and filling stage). 100 soil samples in the month prior to rice planting
have been collected to analyze different agronomic parameters in the laboratory, such as: electrical
conductivity, nutrient content (KNP) and heavy metals. Soil samples are also measured using an ASD FieldSpec
Pro spectrometer (400-2500 nm). Agronomic parameters are estimated using in situ measurements i.e.,
above, and below canopy LAI from Licor 2200c following LICOR protocol, leaf pigments using SPAD 502,
reflectance using ASD and a Hyperspectral drone system (537 channels -VIS-NIR (400-1000 nm), SWIR (900-
2500)), and spectral information also extracted from the new European hyperspectral mission EnMap,
acquired during the month prior to seeding.
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Figure 10. 100-point locations showing stratified random soil sampling in rice farm, Andalusia.

Additionally, the spectral measurements of soil samples (Figure 10) measured with the spectrometer is being
convolved to the EnMap spectral response function to obtain the Look Up Table (LUT) that acts as an
additional model calibration/validation set, to compare new retrieval approaches. Rice grain samples are
being collected form every experimental plot to analyze proteins and trace elements (i.e., As). Chlorophyll
content and LAl information from Sentinel 2, PRISMA and EnMAP, along with in situ measurements from field
campaigns. This information can be used to quantify and improve understanding of rice crop cumulative
response to multiple stressors by which the potential of new European hyperspectral missions in agricultural
monitoring such as EnMap can be evaluated. This experimental data is sufficient to model soil agronomic
parameters, chlorophyll, LAl, and yield, from open-source algorithms such as Partial Least Square Regression
(PLSR) or Random Forest, in a High-Performance Computing (HPC) environment.

5.2. Test site Il - Marchfeld region, Austria

The Marchfeld region (ca 60,000 ha) is one of the major crop production areas of Austria for grain and
vegetables and hence crop failure due to stressors may have severe consequences for food security. The area
is generally flat with an altitude of ~ 160-180m above sea level (Figure 11). Around 75% of the area is used for
agriculture and 30 % is irrigated. There are 884 farms with more than two-thirds (72%) professional farms
where farming is the only source of income with average farm size around 55ha. It has semi-arid climate with
often severe precipitation shortages (typically only 250 - 300 mm of precipitation during May-September).
Therefore, water stress is a major threat to crop production areas as groundwater resources are increasingly
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limited in this area. Water needs during summer months can only be partially alleviated through irrigation,
groundwater in the Marchfeld region must be distributed in the urban and industrial sectors, leading to high
pressure on the quantity and quality of water resources. Water stress is projected to further increase in the
future due to climate change. Soils in the region is highly heterogenous and have low to moderate water
storage capacity (Eitzinger et al. 2013; Thaler et al. 2012). This field has been under observation for long time.
Hence, a wealth of information is available on weather, crop status and performance (e.g., ET, structural and
biochemical crop characteristics, crop yields) as well as soil optical and hydrological properties (e.g., field and
lab spectrometer measurements under different soil wetness conditions; soil properties such as texture, field
capacity and organic carbon content). Several high-resolution vegetation indices maps are available for
stressed and non-stressed fields. The list of available datasets is shown in Table 9.

Crop Masks

- Summer Wheat
- Maize

Figure 11. RGB image of Sentinel 2 displaying maize and summer wheat crop parcels in Marchfeld region
under observation since 2017.

Table 9. shows the available dataset for Marchfeld site.

Product Instrument Spatial resolution Temporal Temporal Spatial
Dataset resolution Coverage Extent
Reflectance VI EnMap, PRISMA, S-  30m, 10m variable/5 2022+, 2019+, Sites
2 2017+
Air-temperature, INCA, SPARTACUS 1Km Hourly/Daily 2011-2021, Sites
Precipitation, v2.1 1961+
Humidity, Wind
speed
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5.3. Test site III - Bonifiche Farm, Italy

Bonifiche Ferraresi farm situated in Jolanda di Savoia (44°52'59"”N, 11°58'48"), Ferrara, Italy is an agri-food
business with one of the largest agricultural holdings in Italy (Figure 12). It has 3850 ha of arable land, the
majority of which is made up of clay and silty soils. Mostly climate is warm and moderate. The farm grows
seven major crops i.e., wheat, barley, corn, rice, soybeans, potatoes, and other crops for horticulture and
medicine. Typically, these crops are produced in succession over several years in rotation. Winter wheat,
which is susceptible to severe lodging, is seeded from the end of October to the beginning of November and
harvested by the end of June. Several wheat cultivars were grown in 2018, including PR22D66, Marco Aurelio,
Claudio, Monastir Massimo Meridio, Rebelde, Odisseo, Giorgione and Senatore Capelli. The cultivation area
of wheat in 2023 was 664.24 ha, the wheat field sizes varied between 2.38 and 84.86 ha.

In May 2023, an extensive field campaign was carried out in which several in situ biophysical parameters
including crop height, plant density, LAl, biomass, tiller number, shoot numbers, cover percentage, fresh
biomass, flower weight etc. as well as stress related parameters such as slant height, vertical lodged height,
lodged area %, point of line failure, crop angle inclination, and lodging score) were measured. Further, wheat
samples were destructively harvested and carried to laboratory for subsequent measurements of lab-based
biochemical measurements (dry biomass, dry matter content, water content, nitrogen content, carbon
content). Field sampling in lodged and healthy fields was carried out using a stratified random sampling
approach at three levels: 1) (ESU) Plot — (90 m X 90 m); 2) Subplot — (15 m X 15 m); 3) Microplot — (1.5 m X 1.5
m). In each ESU/plot, five subplots and in each subplot three microplots were considered for measurements
of physiological parameters. In total 65 (ESU) plots have been sampled of which 33 were lodged and 32 were
healthy plots. In the measured ESUs, a total of 322 subplots (165 lodged and 157 healthy subplots) and 968
microplots (498 lodged and 470 healthy microplots) were measured.

The project aims to use both in-situ and lab measurements of physiological parameters to detect lodging and
assess its severity in wheat fields in combination with satellite imagery from Sentinel 2, simulated Chime,
DESIS and EnMap. The detection and mapping of lodging can be advanced through utilization of narrowband
indices, machine learning algorithms and inversion of PROSAIL-PRO radiative transfer modeling while
considering multiple factors like crop angle of inclination, leaf area index (LAI), spectral characteristics, and
absorption features. This test site can assist in identifying specific spectral regions sensitive to lodging and
predict key agricultural variables such as leaf inclination angle, LAI, nitrogen, chlorophyll, and water content,
which are crucial indicators for lodging in wheat.
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Figure 12. Location of the study area and distribution of sampled plots during field campaign 2023 in Jolanda
di Savoia, Ferrara, Italy.

6. BEST APPROACHES FOR VALIDATING EO BASED CROP
PRODUCTS

This section deciphers a suitable approach to validate stress maps derived from remote sensing data if
developed algorithms are effectively representing the actual stress conditions of the field. For systematic
validation, we need a feedback loop between satellite-based monitoring and field observations to
continuously improve the accuracy of crop stress maps. For which algorithms will be tested on different crop
types at different growth stages, as stress responses can vary significantly among crops. Certain validation
metrics can be used in this process for instance correlation coefficients, RMSE, Bias, accuracy assessment,
time series, regression plots, variance, and phase differences etc. while comparing results with ground-based
information. For hybrid model's performance evaluation, suitable metrics could be on accuracy, precision,
recall, F1-score, or area under the receiver operating characteristic curve (AUC-ROC). It can explain the
uncertainties in the derived products, besides that, some simple measures like visual inspections, collecting
data from multiple locations within satellite image area and yield assessment could also be useful. The project
will consider various points while developing a final product, according to figure 13.

e Usinginstalled ground-based instruments, such as spectroradiometers and thermal cameras, at some
validation sites other than test areas to directly measure crop properties and compare them with
intermediatory subject to availability i.e., satellite or airborne data. Dividing pilot areas into training
and validation datasets for different spatial zones and temporal periods to assess algorithms
performances in stress detection.
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Soil moisture sensors data at various depths can be used to validate remotely sensed water stress
products. Similarly leaf-level measurements, such as chlorophyll content, leaf water potential, and
stomatal conductance, to validate remote sensing-based indicators of crop stress.

Direct comparison and validation of spectral indices from high-resolution, in-situ spectral data that
closely matches the spectral bands of the remote sensing.

Use of validation transects within fields to capture spatial variations in crop stress. These transects
can serve as reference areas for remote sensing validation. Besides that, simultaneous data collection
with remote sensing data acquisition will minimize temporal discrepancies that could affect
validation accuracy.

Analyzing temporal trends in both remote sensing and ground truth data will assist in understanding
the dynamics of crop stress over time.

Engaging agronomists and field experts for insights into specific stressors affecting the crop
Experimental data from other sites on mobile ground platforms (e.g., tractor-mounted sensors) taken
at different growth stages and across larger areas can be used.

Use of Monte Carlo simulations or bootstrapping methods for estimating uncertainty associated with
remote sensing-based crop stress products.

The project will use bottom-up approach to validate regional to global crop stressors products derived from

remote sensing data (i.e., from local field-level measurement to global comparison with satellite-derived

single or multiple stressor products) (Figure 14). In validation process, we will be considering.

Methods and instruments used to collect the field stress conditions at each site.

Measurement extent and sampling scheme at each site.

Integration of field data with high-resolution imagery (EnMap, DESIS, Sentinel 2, PRISMA) at 30 m
resolution.

Algorithms used in deriving crop traits as stress indicators.

Methods to compare high-resolution product with moderate-resolution product (CCl Soil Moisture
product, MODIS Evapotranspiration products, LSA-SAF ET product, MOD17GPP product, newly
developed Sen4GPP product by UoS and Gross Dry Matter Product (GDMP) by Copernicus Global
Land Service.

Network of sites available for field validation (Fluxnet, AgMerra, PhenoCam, EnMap validation sites).
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Figure 13. Flowchart displaying different stages of comparison for crop stressor product mapping.

In our test sites, local field measurements are taken on elementary sampling units (ESU), sub plots and
microplots following field specific sampling strategy to capture the variability across the corresponding site
extent. The measurements are repeated within the ESU specially to capture the variability within the high
spatial resolution imagery (30 m). The number of ESUs is varied by extent of the site, field variability and the
extent of the ESUs themselves. This field data from ESUs will be linked to the spectral features from aerial and
satellite base images through various up scaling approaches (RTMs and machine learning) which will establish
the relationship between the field-based crop stress estimates and high-resolution imagery i.e., EnMap,
Sentinel 2, PRISMA. Final step would be large scale validation through the comparison between the
aggregated high-resolution crop stressor maps and the corresponding satellite products over Europe and
Canada such as Sen4GPP, Evaporative Stress Index — EcoStress as well as an ensemble of sites from sources

mentioned in section 3.3.
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Figure 14. Validation framework for high resolution Crop stressor products and their deriving methodologies.

All these validation activities are essential to check the accuracy of our product and to guide refinement of
algorithms used. This evaluation will show the degree of coherence between the products of the experimental
dataset with respect to the current range of stress indicators determined using i) all independent products
(comparison of global/regional mean values, mean regional/local seasonal cycles, interannual variability) ii)
identify the reasons for the differences, if any, between the experimental dataset products iii) to assess, for
regions where the Lodging/salinity/drought products would be coherent, the weaknesses of the approaches
relying on radiative transfer modelling or machine learning approaches pointing possibly to some process
weaknesses and drawing conclusion on how to improve the stress monitoring methodologies.

7. EUROPEAN AND INTERNATIONAL INITIATIVES ON CROP
STRESS EVALUATION

Integrating of EO4Cereal Stress into other European and international initiatives that are already focused on
monitoring the impacts of multiple stressors on crops can enhance collaboration, data sharing, and the overall
effectiveness of our research efforts. Collaboration at both the European and international levels can lead to
more comprehensive and globally relevant findings. Here are some notable initiatives and organizations that
could be considered for integration:
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7.1. European Initiatives

1. Copernicus Program: The Copernicus program, led by the European Space Agency (ESA) and the
European Commission, provides a wealth of Earth Observation data and services. Sentinel mission
datasets will be deployed in the experimental dataset generation.

Weblink:
https://www.esa.int/Applications/Observing the Earth/Copernicus/Europe s Copernicus_progra
mme

2. JRC - Joint Research Centre: The JRC, the European Commission's science and knowledge service, is
actively involved in research related to agriculture, land use, and environmental monitoring.
Partnering with JRC can provide valuable insights and resources.

Weblink:

https://joint-research-centre.ec.europa.eu/scientific-activities-z/agricultural-monitoring_en

3. EC JPI FACCE (Joint Programming Initiative on Agriculture, Food Security, and Climate Change):
focuses on addressing the challenges of food security and agriculture in the context of climate
change. Integration with JPI FACCE can facilitate access to research networks and knowledge sharing.

Weblink:

https://www.faccejpi.net/en/faccejpi/about.htm

4. EU-funded Research Projects: Many EU-funded research projects and consortia listed below are
dedicated to agricultural monitoring and sustainability. Joining or collaborating with these projects
can provide access to shared resources and expertise. Their list with briefings is given in table 10.

Table 10. List of European funded projects with point of contact and duration of the projects.

Project Objective Coordinator Period
MEF4CAP - EU's Horizon bringing monitoring and technology expertise together Stichting 10ct2020-
2020 research and toinvestigate the possibilities and limitations of satellite =~ Wageningen 31 January
innovation programme and sensor data and the increased digitalisation within  Research, 2024
https://mef4cap.eu/ the agricultural sector. Netherlands

INVITE - EU's Horizon 2020 to improve both efficiency of variety testing and the Acta les instituts 5 Years
research and innovation information available to stakeholders on variety techniques

programme performance under a range of production conditionsand  agricoles, France
https://www.h2020- biotic and abiotic stresses.
invite.eu/
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stakeholders.

I'alimentation et
I'environnement,
France

DROPSA Provide strategies to develop effective, innovative, and  University of January
https://www.eppo.int/RES  practical approaches to protect major European fruit Padova, Italy 2014 to
OURCES/special_projects/  crops from pests and pathogens February
dropsa 2018
AgriLink -  Connecting 6 Living Labs to develop and test new advisory methods James Hutton 2017 to
farmers, advisers and and tools (including information and communication Institute, 2021
researchers for productive technologies - ICT supported) to better link research and  Scotland
and sustainable agriculture  practice.
https://www.agrilink2020.
eu/
Horizon Europe to bridge the data gap of observations at the local level VITO Remote December
ScaleAgData by unlocking, integrating and upscaling the data fromin-  sensing, Belgium 2022 -
https://scaleagdata.eu/en  situ sensors on farms. December
To develop the data technology (from data streaming, 2026
data analytics and Al (Artificial Intelligence) applications)
DIONE developing a direct payment controlling toolbox for Institute of January
https://dione-project.eu/ paying agencies to abide by the modernised CAP Communication 2020 to
(Common Agricultural Policy) regulations, involving and  Computer October
novel techniques that will improve the capabilities of Systems, Greece 2022
satellite technology while integrating various data
sources (drones, soil sensors and mobile applications). At
the same time a system developed on a regional or
national scale will evaluate the monitored parameters to
form evidence-based conclusions regarding eventual
environmental impacts on an entire region.
CIRCASA to develop international synergies concerning research Institut national Nov 2017 to
https://www.circasa- and knowledge exchange in the field of carbon de recherche Feb 2021
project.eu/ sequestration in agricultural soils at European Unionand  pour
global levels, with the active engagement of all relevant  |'agriculture,

5. EOS- Agro platform is a web-based commercial agriculture monitoring system designed to offer
various services to farmers, agricultural cooperatives, and agribusiness firms. These services typically
include early detection of crop risks, cost reduction strategies, farm performance monitoring, and
customized solutions using Al-driven satellite-based data and analysis. https://eos.com/products/crop-

monitoring/

6. Agricultural Drought Monitoring System (ADMS) in Poland —is based on meteorological data and soil-
agricultural maps to present the spatial heterogeneity of water retention in different soil drought
vulnerability categories. The functionality of the ADMS has been modified by using NDVI and NDWI
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from S-1 and S-2 images, which are promising water shortage indicators for crops.
https://susza.iung.pulawy.pl/en/

7.2. International Initiatives

Some international programs are;

1. Water Stress and Climate Indices for Africa’ (WaSCIA) - aims to deliver high-quality Water Stress and
Climate Indices through an easy-to-use web interface to help the management of drought and water
stress in Africa, operated by TELESPAZIO VEGA UK LIMITED (GB). The goal of the WaSCIA service is to
provide crucial information to help detect early onsets of water stress related to drought conditions,
its severity and spatial extent all over Senegal. Its methodology framework is shown in figure 15
deciphering fusion of Sentinel 2 and 3 products and indices for Evapotranspiration and Soil moisture
mapping used for water stress detection. https://eo4society.esa.int/projects/wascia

Simplified Triangle Sentinel 3 Images — Sentinel 2 Images
Method
Land Surface Temperature «—
Points for the triangle are placed NDWY
icly b hod based
t;usysl.an curves weedeon Clouds Mask ———— Compuine

Hot Ed, L» Soil Moisture Index
e NDMI = (BOS - B11) / (BOS + B11)

-~ Wet Edge

L Plotting Graphic Random Forest «—I

Processing

Final output example
. Evaporation
R W High
Syl Medium
g Low
—._*
| —————
Computing
Soil e Index
Mo= (1-T *pixel)/(1- Fr) Maps Maps
_
Evapotranspiration Fraction 500 m resolution 30 m resolution

EF = Mo x (1-Fr)+Fr

Figure 15. explains methodology framework of WaSCIA project.

2. GEOGLAM (Group on Earth Observations Global Agricultural Monitoring): is an international initiative
aimed at improving global agricultural monitoring using EO data. EO4CerealStress could align with
GEOGLAM to contribute to global food security efforts. https://earthobservations.org/geoglam.php.

3. FAO - Food and Agriculture Organization of the United Nations: has various programs and data
portals related to crop monitoring and agricultural sustainability like GAEZ, WAPOR etc. Collaborating
with FAO can help disseminate our project's findings and contribute to global policy
recommendations. FAO report on Crop yield response to Water, Irrigation and Drainage paper 66 by
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Pasquale Steduto (FAO, Land and Water Division) could be a useful baseline material for studying
water stress mitigations in crops (Carr, 2013).

i Agro-Ecological Zones (AEZ) modelling framework and databases, GAEZ:
https://gaez.fao.org/

ii. The FAO portal to monitor Water Productivity through Open access of Remotely sensed
derived data, WAPOR: https://wapor.apps.fao.org/home/WAPOR 2/1

4. CGIAR (Consultative Group for International Agricultural Research): CGIAR is a global research
partnership dedicated to reducing poverty, enhancing food security, and improving natural resource
management. Collaborating with CGIAR centers can provide useful insights in agricultural research.
One connection could be Stress Tolerant Maize for Africa (STMA) project implemented to improve
maize varieties with resistance and tolerance to drought, low soil fertility, heat, diseases such as
Maize Lethal Necrosis and pests affecting maize production areas in the region. Project closed in
March 2020. Link is here: https://www.cimmyt.org/projects/stress-tolerant-maize-for-africa-stma/

5. AfricaRice (2014 - 2019) and its team developed and deployed rice varieties with a high yield and
better tolerance to drought, submergence, salinity, iron toxicity and low temperature, as part of a
joint AfricaRice/IRRI project. National agricultural research systems (NARS) scientists (particularly
breeders) and rest of the partners were involved in the selection process to obtain the best cultivars
for their own farmers and consumers. Details are in https://www.africarice.org/arica

6. Drought Watch Program (Canada) is a national monitoring program using earth observation, climate
data and models to evaluate crop stress related to extreme weather. Data sets include crop
condition, satellite soil moisture (SMOS), satellite evapotranspiration (ALEXI-MODIS) and integrated
products like the Vegetation Drought Response Index (using MODIS), the Canadian Drought Monitor
(integrating many data sets include groundwater estimates from GRACE) and yield forecasts. Details
are at: https://agriculture.canada.ca/en/agricultural-production/weather and an interactive tool is

available here: https://agriculture.canada.ca/atlas/apps/metrics/index-en.html?appid=ccm-epc
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