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ACRONYMS 
 

ADMS Agricultural Drought Monitoring System 
AFR Andalusian Farm 
AGB above ground biomass 
AgMERRA Modern-Era Restrospective Analysis for Research and 

Applications in Agriculture 
An Photosynthesis 

ANN Artificial Neural Network 
ASD Analytical Spectral Devices 
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CIRCASA Coordination of International Research Cooperation on Soil 

Carbon Sequestration in Agriculture 
CNN Convolutional neural network 

CWSI Crop water stress index 
DCNN Deep Convolutional neural network 
DESIS DLR Earth Sensing Imaging Spectrometer 
DIONE an integrated EO-based toolbox for modernising CAP area-

based compliance checks 
DL Deep Learning 
DSSAT Decision Support System for Agrotechnology Transfer 
EC JPI FACCE European Commission Joint Programming Initiative on 

Agriculture, Food Security and Climate Change 
EcoStress Ecosystem Spaceborne Thermal Radiometer Experiment on 
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EMR Electromagnetic radiation 
ENET Elastic net regression 
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 EO Earth Observation 
EOS Earth Observing System 
ESA European Space Agency 
ESU Elementary Sampling Unit 
ET Evapotranspiration 
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EU European Union 
EVI Enhanced vegetation index 
FAO Food and Agriculture Organization of the United Nations 
FAPAR fraction of absorbed photosynthetically active radiation 
FARMA Fusion approach for remotely sensed mapping of agriculture 
FDA Fisher's Discriminant Analysis 
FLEX Fluorescence Explorer 
FLUXNET Flux network 
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soil moisture monitoring 
GA Genetic Algorithms 
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Initiative 
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GLASS Global Land Surface Satellite 
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IRRI International Rice Research Institute 
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NARS National Agricultural Research System 
NASA National Aeronautics and Space Administration 
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NDVI Normalized difference vegetation index 
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NDWI Normalized difference water index 
NIR Near Infrared 
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NN Neural Network 
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1. INTRODUCTION 
 

1.1 Purpose and Objective  
 

The overarching objective of the study is to evaluate the synergistic use of multi-source Earth Observation 

(EO) and in-situ data, to understand the effects of multiple stressors and their cumulative effects on crops. 

The new and planned European satellite missions are expected to provide data with improved spatial, 

spectral, and temporal resolution, making them valuable resources for monitoring, and analyzing crop 

stressors. The project takes advantage of the complementary nature of these data sources to gain insights 

into the effects of both individual and cumulative stressors on agricultural crops. The synergistic use of EO 

data, combined with comprehensive data analysis techniques, can enhance our ability to detect, understand, 

and respond to multiple stressors affecting agricultural crops.  

The key aim of the study is to develop products that can be used to monitor these stressors and provide a 

scientific roadmap for the future development of EO products and techniques for monitoring multiple crop 

stressors. These products will be useful for farmers, agronomists, policymakers, and researchers, and can 

provide meaningful insights into crop health and the environmental factors impacting it.  

The core objectives of the study articulate around the following elements: 

• Exploring and identifying suitable data (both in-situ and EO based) and crop models that can be used 

to analyze the relationship between selected key multiple stressors and crops growth status 

evolution.  

• Performing detailed field experiments to evaluate the effects of selected stressors on crop growth 

status.  

• Designing and developing algorithms that can exploit existing in-situ data, field campaign data and 

EO data to monitor multiple stressors and their impact on crop growth status. 

• Generating experimental datasets (using the chosen algorithm/s) that can be used to monitor the 

effect of multiple stressors on crop growth status.  

• Demonstrating the use of experimental datasets to advance scientific understanding of the impacts 

of multiple stressors on crop growth status.  

• Working with relevant stakeholders to demonstrate the usefulness of the experimental datasets and 

scientific findings in mentoring multiple stressors and their impacts on crop growth status.  

• Engaging the user community and scientists in validation and critical assessment of the proposed 

products and impact assessment studies and the design of a scientific roadmap for addressing major 

scientific challenges in using EO data to monitor multiple crop growth stressors. 
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This technical note presents the outcome of the first task on the project concerning the Consolidation of Open 

Scientific Issues. This baseline document hence contains a comprehensive analysis of the scientific basis of the 

project. In particular it: 

• Identifies main scientific challenges and knowledge gaps in using EO and in-situ data to understand 

and monitor impacts of multiple stressors on crops. 

• Identifies up to date EO products and ancillary datasets, that can be used in the development and 

validation of the new crop stress products. 

• Reviews strengths and weaknesses of the current methods and algorithms applied over EO and in-

situ data to understand and monitor impacts of multiple stressors on crops.  

• Identifies relevant testing areas over which the crop stressor products will be generated and 

evaluated. 

• Evaluates ideal requirements (e.g., accuracy levels, spatial and temporal resolutions, and composite 

periods) to generate experimental datasets for understanding and monitoring impacts of multiple 

stressors on crops. 

• Identifies other ongoing projects and initiatives with which we could interact all along the project for 

an enhanced valorization of the EO products. 

Ultimately, the research conducted in this project will simplify the data exploitation from the various satellite 

missions in monitoring the individual and cumulative impacts of various stressors on crops. The recent EO 

data from both European missions (e.g., Copernicus Sentinel missions, PRISMA, EnMap) and US missions (e.g., 

Landsat mission) and experimental in-situ data (e.g., FLEXSense campaign data, LSTM, CHIME, SARSense) have 

potential to address the challenge of monitoring both the individual and combined effects of several stressors 

on crop growth status, productivity, and ecosystem service. The use of these advanced remote sensing 

technologies and their integration with data analytics will assist us in addressing global food security 

challenges. It will advance our ability to monitor crop health, detect stressors, and optimize crop management 

strategies. 

 

1.2 Document Plan  
 

The remaining sections of the document are structured as follows:  

• Section 2 presents the main challenges and knowledge gaps in monitoring multiple stressors in the 

cropping systems.  

• Section 3 reviews the existing ground and satellite databases to be considered in the EO4CerealStress 

project.  

• Section 4 addresses key methodologies for crop stress detection and monitoring 

• Section 5 identifies the test areas over which the EO4CerealStress Experimental Dataset products will 

be generated and summarizes the output EO products.  
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• Section 6 presents framework for validation and evaluation of the project EO products and describes 

the validation/evaluation approach to be used.  

• Section 7 details the collaborations with the different scientific communities and synergies with other 

projects which will be undertaken during the project. 

2. CHALLENGES IN MONITORING MULTIPLE STRESSORS IN 
CROP 

 

2.1  Key stressors and their impact on agriculture 
 

Agriculture is subject to various biotic and abiotic stressors, including drought, pests, diseases, nutrient 

deficiencies, heavy metals, extreme temperatures, and weather events. Abiotic stresses are caused by either 

physical or chemical factors and biotic stresses are caused by infectious agents such as bacteria, fungi, insects, 

etc.) (Gull et al. 2019; Dresselhaus and Hückelhoven, 2018). The physiological changes caused by these 

stressors have a significant impact on plant growth, which has a detrimental effect on agricultural production. 

The impact of each type of stress on crop yield can vary depending on several factors, including the specific 

stressor, the crop species, and environmental conditions. Plants can respond to these adverse conditions 

through various physiological defense mechanisms. However, plants may have limited natural adaptations to 

cope with certain abiotic stresses. For example, many crops are sensitive to extreme temperatures or lack 

mechanisms to utilize limited water resources efficiently. Some crops may have developed natural resistance 

mechanisms against certain pests or diseases. The negative effects of stressors on plant health can be reduced 

with early detection of these mechanisms and implementation of protective measures. Biotic stresses are 

often more localized, affecting individual plants or specific fields. They can be managed through various 

strategies like pesticides, crop rotation, and breeding for resistance (Atkinson and Urwin, 2012). However, a 

comprehensive monitoring of the state of agricultural crops will contribute to the early and accurate 

estimation of yield losses and prevent crop failures. 

Despite the population explosion and increasing food demand in the last century, farmers continue to suffer 

from large economic losses due to climate and biotic stressors. Food security is becoming an urgent issue as 

the global impacts of the climate crisis become more noticeable (Rivera et al. 2023). Climate change is altering 

weather patterns, leading to increased frequency and severity of extreme weather events such as droughts, 

floods, heatwaves, and storms. These events can have devastating effects on crop yields and can lead to 

significant economic losses for farmers (Fróna at al. 2021; Gornall et al. 2010). Moreover, new strains of 

pathogens and pests are emerging, and plants are developing resistance to pesticides, making it challenging 

to manage these biotic stressors effectively. Since, many agricultural systems rely on monoculture farming, 

where a single crop is cultivated over large areas. This practice can increase the vulnerability of crops to biotic 

stressors (Grant, 2007). Small-scale and resource-constrained farmers often lack access to modern farming 

technologies, quality seeds, irrigation, and pest management tools. This limits their ability to adapt to and 

mitigate the effects of stressors. Despite ongoing challenges, the agricultural sector continues to adapt and 
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innovate to meet the growing global demand for food while addressing the economic losses caused by climate 

and biotic stressors. Sustainable and resilient farming practices are increasingly important in ensuring food 

security in the face of these challenges. 

Certain physical and physiological traits of cereal crops are critically important for monitoring agriculture and 

food production. Crop physical traits like morphology and canopy height can impact lodging resistance (the 

ability to stand upright). Leaf characteristics can define photosynthetic efficiency and disease susceptibility. 

The tillering and morphology of flowers, spikelets, and panicles are related to grain production. Depth of the 

root system can affect nutrient and water uptake; the fibrous rooting system of cereal crops is well-suited for 

drought tolerance and adaptive to changing soil conditions. In physiological traits, traits related to 

photosynthesis and respiration i.e., chlorophyll content, photosynthetic efficiency, and carbon assimilation 

rates are direct measures for plant growth and maintenance. Crop health is usually tested through its 

efficiency in physiological processes and tolerance to stress i.e., nutrient uptake efficiency, resistance to 

fungal, bacterial, and viral diseases, heat tolerance, deep root systems, reduced transpiration rates, and 

osmotic adjustments in drought conditions. Understanding and monitoring these traits and crop efficiencies 

are essential for sustainable and productive agriculture. Though the amount and quality of multisource data 

is constantly increasing, integration, analysis and making the best decisions possible using this data in a holistic 

manner is still a challenge. 

Remote Sensing (RS) technologies serve as a diagnostic tool that can act as an early warning system, allowing 

the agricultural community to counter potential problems before they can negatively impact crop 

productivity. It has non-destructive method of data acquisition, making it an inevitable tool to meet multiple 

goals in agriculture, such as monitoring crop production, choosing economically viable activities, reducing 

negative environmental impacts, contributing to climate mitigation and minimizing resource depletion. The 

integration of sensors, automatic data recording, satellite datasets, Unmanned Aerial Vehicles (UAV) datasets, 

Machine Learning (ML) technology and decision support systems can provide a holistic framework to detect 

and monitor crop stress. Combined use of sensors can capture different aspects of the agricultural 

environment. For example, Environmental Mapping and Analysis Program (EnMAP)’s hyperspectral data for 

identifying specific stressors in crops and Sentinel 2 for frequent and large-scale monitoring of crop 

parameters. The combination of spectral and spatial information can enhance detection performance in 

comparison to the use of spectral capacities alone. By combining various soil moisture, thermal, optical, and 

hyperspectral sensors, we can obtain a precise and more comprehensive dataset covering a wide range of 

parameters, such as soil moisture, temperature, spectral reflectance, and more. This can give us a holistic 

understanding and continuous monitoring of the agricultural system. This project will focus on the integrated 

use of sensors and deriving a large set of crop variables to improve understanding of the stressors and their 

effects which will support timely interventions for crop management and food security. 

The use of RS data in agriculture monitoring has increased since 1970s. Increasing publications in the field of 

precision farming and environmental monitoring are giving birth to a wide diversity in RS applications in plant 

stressors as observed by Lasalle et al. 2021 in their work and growing trend is shown in the figure 1. Lasalle et 

al. (2021) reviewed articles published until 2020, following themes, “Hyperspectral”, “field/reflectance 

spectroscopy”, “imaging Spectroscopy”, and “leaf optical/spectral properties” further covering keywords of 
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“plant or vegetation stress”, “stressor”, “stressful Conditions”, and “plant or vegetation health”.  Through 

Google Scholar and Scopus search engines, a total of 466 peer-reviewed articles have been identified since 

1970. Following the same meta review technique, a total of 65 documents were recently published from 2021 

onward as retrieved through SCOPUS Database. Nevertheless, this review study found two major gaps in the 

current methodologies.   

• Discrimination of plant stressors with similar effects on plants  

• The transferability of the methods across scales. 

Further research gaps are discussed in the following section.  

 

 

Figure 1. displays emerging trend of hyperspectral remote sensing for monitoring plant stress since 1970. 

(Lasalle, 2021)  

2.2  Main scientific challenges and knowledge gaps in using EO and in-situ 
data 

 

Scientific studies are growing in assessing the impact of multiple stressors on crops using EO data, machine 

learning and radiative transfer models (RTMs).  Several challenges may arise when integrating stressors in 

modeling, including accurately quantifying interactions between stressors, handling uncertainties in modeling 

multi-stressor interactions, addressing data requirements, and validating model predictions with real-world 

data (Rapaport et al. 2015; Radoglou-Grammatikis et al. 2020). From implementation perspective of this 

project, some scientific challenges could be: 

1. Integrating diverse datasets from different sources (EO satellites, ground-based sensors, 

climate records) is challenging due to variations in data formats, resolutions, and 

spatiotemporal scales. 



EO4CEREALSTRESS                                
Reference: ESA AO/1-11144/22/I-EF  

Number: D1.1 - Requirement baseline review document   

Version: 2.0 

Version 1 Date: 18 OCT 2023  Version 2 Date: 8 DEC 2023                                                                                                                                                                   

   

                                                                                                                                                                       

 

6 | P a g e  

 

2. A single or numerous stress sources, as well as biotic or abiotic stress combinations, can 

cause plants to have very similar physiological responses, making their evaluation 

problematic (Blum, 2016). To date, few studies have focused on disentangling 

environmental stress sources. The distinction between biotic and abiotic stresses is a 

difficult undertaking. 

• Effects of the multiple stressors (e.g., drought, pests, diseases, nutrient deficiencies) can be 

synergistic or antagonistic on plant health and reflectance, which is a major limitation of the 

current methods as most cannot unravel the contribution of individual stressors to the 

response observed, which is only possible through proximal reflectance measuring methods 

i.e., drones, UAVs, handheld devices, towers etc.  

• Some technical challenges are associated with proximal hyperspectral sensor’s setup, data 

processing, and sample type. 

• Proximal sensing has limited spatial coverage. Some platforms are weather-dependent, and 

adverse weather conditions can limit data collection opportunities. Some like UAVs can have 

payload constraints, limiting the number of sensors and the size of cameras that can be 

carried, which may affect the spectral range and resolution of collected data. 

• Balancing the need for high temporal and spatial resolution data with the limitations of 

available satellite sensors and resources consistency 

• Crops and stressors can exhibit significant regional and local variations, making it challenging 

to generalize findings. 

• Challenge lies in assessing the effectiveness of stressor mitigation strategies while ensuring 

their applicability and scalability across diverse agricultural settings. 

• Most RS methods are either species-specific or dedicated to a single scale of monitoring 

(leaf, canopy, images) and context oriented, such as precision farming requires monitoring 

stress over mono specific crop fields while environmental monitoring requires methods 

that can be applied at a broad scale over mixed canopies. 

• The transition from controlled greenhouse experiments, where these methods are often 

developed, to complex and variable field conditions introduce uncertainties. Greenhouse 

conditions may not adequately represent the full spectrum of environmental factors and 

stressors encountered in the field, making it difficult to accurately assess how well the 

strategies will perform in practical, real-world scenarios, as observed in spectral response 

models developed for salinity and foliar nitrogen, primarily based on greenhouse 

experiments. These models may not be readily applicable in field conditions due to limited 

factors considered in greenhouses and the presence of multiple stresses in the field. 

(Goldsmith et al. 2020).  

• On a large scale, the application of data assimilation is generally limited due to the 

availability and quality of the data from RS. Relatively high-resolution data from RS can 

provide accurate estimates of crop variables, they may be limited by scale, repeat time, and 

the availability of cloud-free imagery.  
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• A significant challenge in remote sensing is the retrieval of desired information. 

Multispectral sensors primarily offer canopy structural measurements, such as 

photosynthetically active leaf area, but their results can be limited due to comparatively 

coarse spectral sampling. 

• To address spatial and temporal assessment needs, the spectral domain is often combined 

with hyperspectral remote sensing. However, the accessibility of high-quality hyperspectral 

data from missions like PRISMA, EnMap, and DESIS is not common. 

• In cases where hyperspectral data availability is limited, the use and processing of existing 

hyperspectral data from field campaigns, as well as the development of accurate machine 

learning models for remote sensing applications, can be computationally intensive and may 

require adequate ground-truthing for model validation. 

• Satellite-based sensor platforms are valuable for larger-scale monitoring, providing 

measurements over broader areas. However, they often suffer from limitations in data 

resolution, and cloud coverage can significantly affect the quality of information collected. 

• Satellite-based sensors can revisit areas on a daily to weekly basis, but their limited revisit 

time may hinder their effectiveness, especially for detecting early signs of stress. 

Nevertheless, proximal sensing offers flexibility in terms of timing. 

• Satellite sensors may not always be suitable in specific environmental conditions, such as 

those observed in the aftermath of frost events. These conditions may not be conducive for 

gathering spectral data. 

• There is still uncertainty regarding the ability of satellites with spatial resolutions of 1-30 

meters to confidently detect certain stress signals (as discussed in Murphy et al. 2020). 

• One significant gap exists in the combined use of high to low-resolution sensors for 

gathering spectral signals. Since different stressors can generate similar stress reactions, 

remote sensing alone often cannot distinguish between different abiotic stresses. 

Some key knowledge gaps are found in:  

1. Developing methods to upscale local observations to regional and global assessments while 

accounting for spatial and temporal variability 

2. Developing standardized protocols for model integration and validation that consider the complexity 

of interactions among stressors and environmental variables. 

3. Advancing spectral and machine learning techniques to improve the discrimination and identification 

of specific stressors. 

4. Developing standardized and cost-effective methods for calibration and validation that can be 

applied across diverse regions and ecosystems. 

5. Determining optimal resolutions for specific stressor detection and monitoring scenarios and 

developing methods to address trade-offs between them. 

6. Developing robust techniques for seamless data integration and fusion, enabling a holistic view of 

crop conditions, remains a priority. 
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EO4CerealStress aims to address significant knowledge gaps by compiling an experimental database that 

considers both single and multiple stressors while accommodating various field scenarios and variabilities. 

The project will focus on developing new spectral algorithms to improve accuracy and precision in stress 

detection. To achieve these goals, the project will collect extensive field data, including information on soil 

types, crop stress indicators, and crop performance. Moreover, existing data on crop yield and management 

practices from farmers, extension services, and government agencies will be incorporated into the project. 

This database will undergo standardization, cleaning, gap-filling, and other preparations to make it ready for 

use in detecting the impacts of stressors on crops. 

3. EXISTING GROUND AND SATELLITE DATASETS ON CROP 
STRESS  

 

This section deals with the available ground and RS datasets that can be used in the development and 

validation of the new EO-based products for understanding and monitoring the impacts of multiple crop 

stressors. 

3.1 Optical Remote sensing: Coarse to high resolution satellite 
sensors 

 In the last three decades, Remote sensing has become one of the main sources of the data that can be used 

to provide spatial information on crop status in a comprehensive and nondestructive manner at regional to 

global scale. The availability of Data sets from RS has evolved significantly due to improvement in technology 

and development of new sensors (both in the optical and microwave domains). A list of available RS data is 

given in Table 1.  

Table 1. provides a list of satellite data for the years (2015 – 2023). 

Satellite  Sensor Spatial 
Resolution 

Temporal 
Resolution 

Spectral 
Resolution 

Datasets  

Coarse Resolution   

SMOS (2009 – 
present) 

Microwave 35km 3 days L-Band 
(19.4 – 
76.9cm) 

Brightness 
temperature, 
Soil moisture 

MODIS (Terra: 
1999 – present, 
Aqua: 2002 – 
present) 

Multispectral 250 – 1000 
m  

1 – 2 days 36 bands 
(0.4 – 14) 

Black sky 
FAPAR, GPP, 
Landcover, ET, 
NDVI 

Fine Resolution   

Landsat 7 (1999 – 
present) 
Landsat 8 (2013 – 
present) 

Multispectral 30 – 120 m 16 days  Cropland 
products (30m 
– South Africa) 
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Sentinel 1 (2013 – 
present) 

Radar  5 * 20 m  6 days C-Band 
(3.75 – 7.5 
cm) 

Level 1 to 2 

Sentinel 2 (2015 – 
present) 

Multispectral 10,20, and 
60 

5 days 10 bands 
(0.4 – 1.3) 

Level 1C to 
Level 2A 

Sentinel 3 (2016 – 
present) 

Multispectral 300m 27 days 21 bands 
(0.4 – 1) 

Level 1B 

HJ-1 A/B CCD 
(2009 – present) 

 Multi + 
Hyperspectral 

30 m 2 – 4 days 4 bands 
(0.4 – 0.9) 

Level 1 - 2 

GEOSAT-1 (2009 – 
present) 

Multispectral 22 m  Daily 3 bands 
(0.4 – 1.3) 

Multiple,  
Level1 a,b,c 

SPOT 5 (2002 – 
2015) 
SPOT 6 (2012 – 
present) 

Multispectral 2.5 – 30 m 1 – 26 days 4 bands 
(0.4 – 0.8) 

Level1A to 
Level2B 

Rapid Eye (2003 – 
2020) 

Multispectral 6.5 m 1 – 5.5 days 5 bands 
(0.4 – 0.8) 

Level 3a 

GaoFen-1 (2006 – 
present) 

Multispectral 16 m 4 days 4 bands 
(0.4 – 0.8) 

Level 1 

EnMap (2022 – 
present) 

Hyperspectral  30m  4 – 27 days 246 bands 
(0.4 – 2.5) 

Level 1B, 1C,2A 

PRISMA (2019 – 
present) 

Hyperspectral 30m 29 days Bands 239  
(0.4 – 2.5) 
<12nm 

Level0  to  Level 
2 

PlanetScope (2016 
– present) 

Multispectral 3 – 5m Daily 8 bands 
(0.4 – 0.85) 

Level 1B to 3B, 
Multiple 

ECOSTRESS (2018 
– Present) 

Thermal 100m 3 days 6 bands 
(0.8 – 1.2) 

LST, 
Evaporative 
Stress Index 

DESIS (2018 – 
present) 

Hyperspectral 30m 3 – 5 days 235 bands 
0.4 – 1  
(3.3 nm) 

Level1A  to 2A 

FSSCat (2020 – 
2021) 

Hyperspectral 75m *** 50 bands 
0.4 – 1.3 
(18nm) 

Level 1C 

 

Many optical medium-resolution satellite sensors provide freely available data that can be valuable for crop 

stress assessment. Some key satellite missions and sensors that researchers commonly used for monitoring 

crops and studying crop stress are shown in Table 1. MODIS sensors, aboard NASA's Terra and Aqua satellites, 

provide daily global coverage at a coarser spatial resolution (250 to 1000 meters). Although the spatial 

resolution is lower compared to other sensors, they are still valuable for long-term monitoring of vegetation 

and crop health at large scale. They are valuable for monitoring crop health and detecting stress conditions. 

Sentinel-3's Ocean and Land Colour Instrument (OLCI) and Sea and Land Surface Temperature Radiometer 
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(SLSTR) instruments can also be useful for monitoring crops. Sentinel-3 (S3) satellite measures visible and 

infrared radiance since 19 April 2016, with a revisit time of 1.1 days (Donlon et al. 2012). Its high revisit time 

and the early overpass time (before 11:20 a.m.) enable the monitoring of vegetation over the growing season 

and limit the problem of clouds. Sentinel-2A and Sentinel-2B provide high-resolution multispectral data (10 

meters for some bands) with a revisit time of 5 days. PlanetScope operated by Planet Labs offers daily global 

coverage at a high spatial resolution (3 to 5 meters). Its frequent revisit time and high-resolution data are 

advantageous for detecting and monitoring stress factors. Compared to conventional multispectral EO 

systems, emerging hyperspectral satellite missions give a variety of observable variables, higher accuracy of 

information and transferability of variable estimation techniques. Examples of sources of hyperspectral data 

include i.e., EnMap, PRISMA, DESIS. They can give detailed soil and crop parameters after processing such as 

the ratio of vegetated to bare soil area, water and pigment content of plants, soil organic, clay, carbonates 

and salt content, and soil moisture. Their entire spectral information within hyperspectral data can be 

harnessed from machine learning approaches with enhanced spectral analyses. Their spatial and temporal 

resolution are being fully exploited by linking empirical and physical approaches and generalized empirical 

models, further details are in the section 4. 

Some of the existing datasets and application examples from different studies are:  

• The Harmonized Landsat Sentinel-2 (HLS) is a Level 3 product providing high quality crop related 

information at 30 m resolution, easy to use for cover crops, irrigation, and tillage practice 

assessments, available on USGS Earth Explorer and Landsat Look viewer.  

• GFSAD1000 is providing cropland extent at 1km prepared from integration of multi-sensor remote 

sensing data (e.g., Landsat, MODIS, AVHRR), secondary data, and field-plot data providing Landsat 

derived rainfed and irrigated cropland product.  

• In another study, a global scale high resolution FAPAR product (30m) is generated from the fusion of 

Landsat and Glass through a hybrid algorithm developed from the integration of physically based 

radiative transfer models and machine learning (Jin et al. 2022). 

• Different Sensors data can be harmonized to retrieve crop performances. One of the examples is Jiri 

Tomicek et al (2022)’s work in the Czech Republic in which a dense seasonal trajectory generated 

with harmony of Sentinel-2 MSI and Landsat OLI and tested for the six agronomic crops: winter 

wheat, spring barley, winter rapeseed, alfalfa, sugar beetroot, and corn. A simple linear 

transformation was applied on vegetation indices i.e., (NDVI, MSAVI, and NDWI_1610) using an 

artificial neural network for which training data derived from the PROSAIL radiative transfer model. 

By merging Sentinel-2 (A/B) and Landsat (8/9) satellites, a dense harmonized LAI time series can be 

created. 

• Example of an open-source applications from fusion of multiple sensors like FARMA which enables 

large area mapping with modest computing power, its application assessed over WorldView VHR 

optical, Sentinel-1 Synthetic Aperture Radar, and Sentinel-2 and Sentinel-3 optical imagery, such 

fusions facilitate efficient agriculture mapping and monitoring broadly (Thomas et al. 2020). It could 

be a tangible approach for regional scale very high-resolution mapping; however, high cost of 

commercial satellites could be a potential constraint. 
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3.2 Proximal sensing through Aircraft to Handheld Cameras:  
 

The use of proximal sensing tools in crop monitoring and stressor detection is continuously evolving, offering 

new opportunities to enhance agricultural practices and address challenges related to crop health and 

productivity. It is one of the most promising technologies for the assessment of plant physiology, as well as 

their reactions to stress by combining spatial and spectral information. It can be with non-imaging sensors 

without the spatial field of view or imaging sensors, or it can be of varied spectral ranges from multispectral 

to hyperspectral domain depending installed camera devices.  The multispectral UAVs and affordable field 

sensors provide non abstracted data at high spatial and temporal resolution. UAVs provide relatively low-cost 

imaging at high spatial resolution, low altitude, and user-preferred temporal resolution. Therefore, they are 

well suited for field scale application. 

 In fact, hyperspectral UAVs equipped with remote sensing payloads have become increasingly popular for 

crop monitoring. They offer flexibility in data collection, allowing for rapid and high-resolution imaging of 

fields and providing timely and localized information about crop stressors, enabling precise interventions. 

UAV-based wall-to-wall ultrahigh-resolution canopy map is a cutting-edge mapping technique that leverages 

drones to create a comprehensive and highly detailed map of the canopy cover in a specific area, providing 

valuable data for crop cover. Compared to satellite imagery in which some are relatively expensive (e.g., 

RapidEye) and are susceptible to cloud conditions (e.g., Sentinel-2), they are flexible in spectral range allowing 

for precise data collection. Pest is one of the main biotic stressors of crop, for which hyperspectral imaging 

has been preferred in proximal sensing for detection.  Most studies exploited very-high-resolution UAV images 

(<1 m) covering the VNIR domain to detect pest injury in crops, while those on wild vegetation have mostly 

used high-resolution airborne images (1 – 5 m). The selection of appropriate platform varies by research 

problem and focus.  

3.2.1 Handheld and fixed Spectroradiometers 
 

Handled and fixed spectroradiometers are used to collect leaf and canopy spectra under both controlled and 

natural conditions. These proximal measurements are commonly used for calibrating stress monitoring 

methods intended to be applied to airborne or satellite imaging spectroscopy (Lassalle et al. 2019a; Sanches 

et al. 2013a). Non-imaging sensors like the ASD FieldSpec are indeed lightweight, portable, and relatively easy 

to use. Measurements performed with a leaf-clip and an internal light source in ASDs are best-suited to avoid 

the influence of the environment of the measured spectrum, including light illumination, atmospheric noise, 

clouds, shadows, and surrounding materials. Some other examples are shown in table 2 with specifications.  

Table 2. shows specifications of some widely used proximal instruments. 

Proximal Instrument  Spectral range  Spectral resolution Spectral 
band 

ASD FieldSpec3 spectroradiometer 300–2500 nm 3 nm between 350–1000 nm, 10 
nm between 1000–2500 nm 

2151  
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ULTRIS X20 Plus hyperspectral 
mounted on aircraft 

350 – 1000 nm 350–1000 nm,4nm 164  

DJI Phantom 4 450 – 840nm 16 – 26nm 6  

Field Spec Pro FR2500 350–2500 nm 3 – 8nm 
3 nm @ 700 nm, 10 nm @ 1500 
nm, and 10 nm @ 2100 nm 

1512 

Headwall Hyperspec 
Co-Aligned 
VNIR-SWIR 
Imaging Sensor 

400 – 2500 nm 350 − 2500 nm, 1 – 3 nm spacing 537 

  

 

 

 

 

 

                                 ULTRIS X20 Hyperspectral Imager                      ASD FieldSpec3 spectroradiometer          

 

 

 

 

 

                                    DJI Phantom 4 Multispectral                             Hyperspec Co-Aligned VNIR-SWIR 

By varying the acquisition footprint, canopy reflectance can be studied from the scale of a single plant to that 

of a complex species community. Drones can also be equipped with custom sensors to assist in detecting 

abiotic stresses in their early stages. They can provide canopy-scale data with high spatial resolutions (<1m); 

nevertheless, they have some limitations regarding payload and flight time. Sensors mounted on land-based 

devices can give a high spatial resolution, allowing them to measure plant parameters at the leaf or canopy 

scale, with spatial resolutions of up to one centimeter (Zhou et al., 2021). One advantage of proximal 

hyperspectral sensors, such as the co-aligned VNIR-SWIR camera with 537 channels from Headwall, is that 

they can be configured to match the spectral settings of satellite-borne missions like PRISMA, Enmap, and 

CHIME. This capability is demonstrated in the rice pilot project undertaken by the University of Seville. The 

other means of proximal sensing are displayed in figure 2.  
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Figure 2. Various proximal sensing platforms for spectral data collections (a) leaf reflectance using a leaf-clip 

attached to a spectroradiometer, (b) canopy reflectance using a fore optics fixed at nadir, (c–d) close-range 

hyperspectral imaging of (c) leaf samples and (d) plants, (e–h) canopy reflectance in the field using a 

spectroradiometer (e) a fixed at nadir, (f) handled, and (g) mounted on a goniometer system and (h) a mobile 

platform, (i–j) tree canopy reflectance using (i) a tower and (j) a telescopic boom lift, (k–l) canopy reflectance 

using a spectroradiometer mounted on (k) a motorized vehicle and (l) a tractor. (m) Drone- and (n) airborne-

embedded hyperspectral imaging spectrometers proximal and images. (Lassalle, 2021) 

In ground-based measurements, data can be acquired even at finer spatial resolutions and without 

consideration of sensor size or weight, but sampling is slower and may be affected by environmental drift, as 

occurs in large-scale studies (Liu et al. 2020b). In this case, a multiscale imaging technique would be beneficial 

for obtaining comprehensive information about plant stress over a wide area with a high level of spatial and 

spectral resolution. Applying multisource remote sensing data, such as multi-spatial, multitemporal, and 

multi-angular, increases the estimation accuracy. In case of limited access to high spectral resolution, a 

multisensory approach can be adopted but a major challenge would be the scaling effect if the land cover is 

heterogeneous at the pixel scale.  

Hyperspectral data from airborne platforms or drones have the potential to provide more precise spectral 

information regarding crop stress, particularly in the red edge, NIR, and SWIR regions. Proximal measurements 

at the canopy scale with UAVs make a good transition between leaf-scale proximal spectroscopy and broad-
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scale imaging. Airborne imaging also known as plane-borne hyperspectral imaging is a reliable solution for 

monitoring plant stress at a broad-scale with high to very-high spatial resolution (50cm–10 m). Secondly, 

airborne hyperspectral images can be degraded to lower spatial and spectral resolutions to assess the 

accuracy of stress monitoring under varying sensor specifications. This can be applied to evaluate the 

compatibility of stress monitoring methods with operating satellite spectrometers and to formulate 

recommendations for future sensor specifications. Some of the aerial campaign data from new hyperspectral 

missions is now available. Over the last 5 years, ESA and other agencies have undertaken these airborne 

campaigns to collect test data for several planned and new Satellite missions (e.g., EnMap, CHIME). Their 

grographical locations are displayed in the figure 3. This data can be used for multiscale study of finding the 

relation between crop biophysical variables and EO-based stress signature.   

 

Figure 3. Location of historical aerial campaign data archived for cal-val activities of new hyperspectral 

missions. 

Each data source has its own advantages and disadvantages. Combined proximal hyperspectral sensing with 

airborne or satellite imagery, from leaf to satellite scale, could be a viable solution to detecting crop stress in 

the landscape. It can set our baseline expertise to harness the new satellite missions, which are under 

development and can provide even more accurate information about crops and the environment (Lassalle, 

2021). UAV hyperspectral cameras offer very-high spatial (<1 m) and spectral resolutions to field operators 

and enable timely flights over a specific area.  

3.3 Existing Ground Datasets for Monitoring and Validation  
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There are several existing ground datasets related to crop stress and agricultural monitoring that can be 

exploited for sensor/model calibration and validation activities.  

• Some contextual information can be taken from USDA NASS that provides comprehensive 

agricultural data, including crop condition reports, crop production statistics, and crop stress-related 

information. For example CroplandCROS (https://croplandcros.scinet.usda.gov/) web application 

give access to crop statistics, there are other streams like crop-CASMA (crop condition and soil 

moisture analytics), VegScape (vegetation condition explorer based on some primary indices), 

datasets on Crop Progress and conditions, crop sequence boundaries (interactive maps), disaster 

analysis etc. All this information can be harnessed for cross comparisons and can be helpful in 

methodology development.  

•  AgMERRA (Agricultural Model Intercomparison and Improvement Project Modern-Era Retrospective 

Analysis for Research and Applications) and Global Gridded Crop Model Intercomparison (GGCMI) 

phase 1 dataset are examples of global gridded dataset that contains information on various 

meteorological variables, such as temperature, precipitation, and radiation. Researchers use this 

dataset to study the impact of climate stress on crops, testing of crop model performance, and assess 

productivity in relation to environmental impacts. They can be retrieved by the following links: 

i. AgMERRA: https://data.giss.nasa.gov/impacts/agmipcf/agmerra/ 

ii. GGCMI: https://data.agmip.org/cropsitedb 

• FLUXNET is a global network of micrometeorological tower sites that measure various atmospheric 

and ecosystem variables, including carbon dioxide, water vapor and energy fluxes. These 

measurements are valuable for studying the physiological responses of crops to environmental 

stress. There are hundreds of sites monitoring all over the world with a huge wide network. Some 

potential crop sites could be Groningen, Netherlands (Wheatfields), El-Saler Sueca, Spain (Rice and 

rainfed crops), Gebesee, Germany (cereals, potato, sugarbeet) Roskilde, Denmark (Wheat and 

Maize), Oensingen, Switzerland (intensive crop rotation), Lonzee Belgium (rotational cropping 

system), Lamasquere and Aurade, France (maize, wheat, rapeseed), These sites can give 

micrometeorological, crop rotation, soil moisture, vegetation parameters information on a large 

temporal scale. ICOS Observational data product on Summer 2018 Drought in Europe compiled from 

52 stations in FLUXNET (https://www.icos-cp.eu/data-products/YVR0-4898) is also available and can 

be used for crop stress product validation.  

• The Phenocam network consists of cameras placed in various agricultural ecosystems in America. 

These cameras capture high-frequency images of vegetation, allowing researchers to monitor 

changes in crop phenology and assess stress responses. Phenocam Dataset v2.0 provides a time 

series of vegetation phenological observations for 393 sites and products consisting of 1783 site years 

of observations across diverse ecosystems of the world (mostly North America) from 2000-2018. This 

data can be used for phenological model validation and development from this link 

https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V2.html . Camera images are also available 

by university of Seville over rice crop fields.  

• Agricultural research stations and universities often conduct field experiments to study crop stress 

responses to different factors, such as drought, nutrient deficiency, and pests. Data from these 

https://croplandcros.scinet.usda.gov/
https://www.icos-cp.eu/data-products/YVR0-4898
https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V2.html
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experiments can be valuable for understanding crop stress mechanisms, such as Rothamsted 

Research station (https://www.rothamsted.ac.uk/north-wyke-farm-platform). There could be 

reproducible controlled experiments that can be used to evaluate the intensity and duration of 

exposure to a single or multiple stressors (Tirado et al. 2021). Care is needed as some of these data 

may not be very useful because several stress exposure situations cannot be replicated in an 

experimental setting, sometimes the stressor is hard to manipulate, or the species are particularly 

challenging (Grieco et al. 2022a). However, their field measurements of leaf or canopy reflectance 

can be used as calibration data to test airborne and satellite-based imaging procedures (Laroche-

Pinel et al. 2021).  

3.4 Key Crop variables for stress monitoring 
 

Some key remote sensing variables that can be gathered from different RS and ground resources:  

1. Above-ground biomass: advanced remote sensing techniques, such as LiDAR (Light Detection and 

Ranging) and synthetic aperture radar (SAR), are now being used for estimation of AGB, especially in 

forests and areas with complex vegetation structures. These techniques provide three-dimensional 

information about vegetation structure, which can improve AGB estimation accuracy. Regression 

models, such as linear regression or machine learning algorithms, are used for establishing statistical 

relation between sensor-based vegetation indices and ground based AGB measurements such as 

biomass harvesting, allometric equations, or forest inventory plots. 

2.  Leaf Area Index: LAI is an essential vegetation parameter that quantifies the total leaf surface area 

in a unit area of land or canopy. It can be measured through both remote sensing and in-situ 

methods. It is crucial for assessing crop stress because it provides insights into the vegetation's 

health, growth, and response to environmental conditions. It is measured through various ways such 

as  

2.1. LAI-2000 Plant Canopy Analyzer measures the amount of photosynthetically active radiation 

(PAR) both above and below the canopy. It calculates LAI by analyzing the ratio of these 

measurements. 

2.2. Hemispherical Photography cameras capture hemispherical images of the canopy, which can be 

used to calculate LAI based on the proportion of the hemisphere covered by leaves. This method 

provides a visual representation of the canopy structure. 

2.3. LIDAR (Light Detection and Ranging): LIDAR data provides high-resolution 3D information about 

canopy structure, including leaf distribution. LAI can be estimated from LIDAR data by analyzing 

the point cloud information. 

2.4. Hyperspectral Imagery: Hyperspectral sensors capture detailed spectral information, enabling 

LAI estimation by analyzing the reflectance data at different wavelengths. This information can 

be used to infer leaf density and cover. 

2.5. Remote sensing platforms like satellites and aerial imagery are used to estimate LAI over large 

areas. These images capture the reflection and absorption of different wavelengths of light, 
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which are used to derive LAI values. Sensors on satellites such as MODIS, Sentinel and Landsat 

are freely employed for this purpose. 

3. Crop inclination angle: Crop inclination angle, also known as crop lean or lodging angle, is the angle 

at which the crops lean or tilt in the field. It can be measured both through remote sensing and in-

situ methods. Specialized instruments like clinometers or inclinometers, sometimes they are called 

tilt meters, a tilt sensor or slope gauges can be used to measure the inclination angle more precisely. 

These devices are placed on or near the crop and provide an angle measurement. Drones equipped 

with cameras and sensors capture high-resolution imagery of crops from different angles can be used 

to measure the inclination angle of the crops. Crops that are inclined at a certain angle are at higher 

risk of lodging, which is when the crops fall over due to various factors like wind, rain, or disease. 

Understanding the inclination angle helps predict lodging risks and take preventive measures. 

4. Leaf/Canopy nitrogen accumulation:  Nitrogen is a critical component of chlorophyll and other leaf 

pigments involved in photosynthesis, so changes in leaf nitrogen content can influence the way 

vegetation reflects light in certain spectral bands which can be detected with several remote sensing 

technologies such as multispectral or hyperspectral satellite or aerial imagery covering the area of 

interest and wavelength range in the visible, near-infrared, and sometimes shortwave infrared parts 

of the electromagnetic spectrum. Field measurements of leaf nitrogen content, often come through 

leaf sampling and laboratory analysis, then statistical models or relationships between vegetation 

indices and the actual leaf nitrogen content measured in the field are developed. Model calibration 

is essential for accurate nitrogen estimation. 

5. Canopy cover: Canopy cover is a direct indicator of the overall health and vigor of crops. A dense and 

healthy canopy typically indicates that the crop is growing well and is less stressed. Conversely, a 

sparse or thin canopy may suggest crop stress factors such as water scarcity, nutrient deficiencies, or 

pest damage. Canopy cover information can be generated from coarse to medium satellite resolution 

datasets. 

6. Soil Moisture: Monitoring soil moisture levels can help detect early signs of drought stress in crops. 

As soil moisture decreases, plants experience water stress, which can result in reduced growth, yield 

losses, and crop failure if not addressed. Changes in soil moisture may also indicate areas where crop 

health problems are developing. It can help in the early detection of diseases and pests that thrive 

under certain moisture conditions. This can be measured from sensor probes and Microwave 

sensors.  

7. Chlorophyll content: Chlorophyll, light absorbing tissue, plays a critical role in photosynthesis. 

Fluctuations in chlorophyll levels due to stress may lead to changes in the interaction between plants 

and light. It requires hyperspectral image sensing in high resolution. Ground-based spectroscopy 

instruments are often used to measure the spectral reflectance of vegetation in the field. It can be 

measured in labs and deduced using handheld instruments such as SPAD and generated at landscape 

scale from satellite sensors. 

8. Fraction of absorbed photosynthetically active radiation (FAPAR): FAPAR is a critical parameter for 

vegetation photosynthesis and primary production estimates. It can detect stress in crops before 

visible symptoms appear. When crops experience stress due to factors like water scarcity, nutrient 

deficiency, or disease, they may reduce their photosynthetic activity. This reduction in 
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photosynthesis can lead to a decrease in FAPAR, allowing for early stress detection. FAPAR over the 

growing season provides insights into the temporal dynamics of crop stress. Remote sensing 

satellites, such as MODIS (Moderate Resolution Imaging Spectroradiometer) and other VIIRS (Visible 

Infrared Imaging Radiometer Suite), have spectral bands that are sensitive to vegetation and 

photosynthetically active radiation. These bands capture the reflected sunlight from vegetation, 

providing valuable information for FAPAR estimation. Ground-based instruments, such as 

spectroradiometers, are used to measure the amount of photosynthetically active radiation at the 

ground level.  

9. Grain protein content: Grain protein content is typically measured through laboratory-based 

techniques, primarily near-infrared spectroscopy (NIRS) and traditional wet chemistry methods. 

Remote sensing technology does not directly measure grain protein content; however, change in 

nutrient content at the leaf and canopy can be translated and linked to the content in the grain.  

10. Maturity date: Delays or unevenness in maturity, as well as premature senescence, can signal various 

stress factors, including water stress, nutrient deficiencies, temperature extremes, and pest or 

disease damage. Monitoring crop maturity is essential for timely intervention and effective crop 

management in response to these stressors. Change detection techniques applied to time-series 

remote sensing data can identify changes in crop conditions over time. Sudden changes or anomalies 

in crop phenology or growth patterns compared to historical data or expected growth stages can be 

indicative of stress factors. 

11. Evapotranspiration: ET is a direct indicator of water use by crops but cannot be directly measured 

with satellite data. It can detect early signs of water stress in crops. When water availability is limited, 

crops may reduce their transpiration rates, leading to lower ET values. Measuring ET can be done 

using various methods, ranging from simple on-site measurements (eddy covariance, lysimeter, soil 

moisture sensors) to more complex remote sensing techniques (energy balance models, 

ecohydrological models etc.). 

12. Gross primary production:  Decreases in GPP can serve as an early indicator of crop stress. Various 

stress factors, such as water scarcity, nutrient deficiencies, pest damage, and disease, can limit 

photosynthesis and result in lower GPP. Photosynthesis models, Light use efficiency models, such as 

the Farquhar model, can estimate GPP based on environmental variables, leaf-level data, and 

physiological parameters. These models require detailed data on leaf characteristics and 

environmental conditions. It can be directly measured by eddy covariance method.  

13. Root weight: Estimating root biomass using remote sensing remains a challenge, advances in 

technology and modeling techniques are improving our ability to indirectly assess root health and 

stress. Remote sensing technologies, such as digital imaging and specialized root cameras, can be 

used to capture images of roots within the rhizotron. Ground penetrating radar (GPR) uses radar 

pulses to image subsurface structures, they can provide information about root density and 

distribution in the soil profile. Deeper roots will access moisture at greater depths, which can be 

detected by soil moisture sensors. 

14. Panicle weight: Panicle weight can serve as an indicator of stress during the reproductive stage of 

crop growth. It is an essential variable for crop stress monitoring, particularly in cereal crops.   

Environmental stressors, such as drought, nutrient deficiencies, or pest damage, can reduce panicle 
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size and weight. Measuring panicle weight directly using remote sensing is challenging because 

panicles are typically located below the canopy and are difficult to distinguish from other plant 

components. Crop growth models, such as the DSSAT (Decision Support System for Agrotechnology 

Transfer) model, can estimate crop development stages and predict panicle weight based on weather 

data, soil properties, and management practices. Combining remote sensing data with ground-based 

measurements and modeling approaches can provide valuable information about panicle weight. 

15. Carotenoids: Carotenoids, particularly beta-carotene, give plants their orange and yellow colors. 

Changes in these colors can be visible indicators of stress. Under certain stress conditions, chlorophyll 

degradation occurs, leading to a decrease in green pigments and an increase in carotenoid pigments. 

This change in pigment composition can be monitored as an indicator of stress as deciphered in 

Figure 4. Measuring carotenoids and xanthophylls in plants is typically done through laboratory-

based chemical analysis or spectroscopy e.g., High-Performance Liquid Chromatography (HPLC), 

Spectrophotometry, Fluorescence Spectroscopy, Mass Spectrometry, Colorimetric Assays.   

 

Figure 4. a) is giving cross sectional view of mesophyll tissue, b) plant responses to different stressor at canopy 

spectra c) is giving sensitivity of leaf molecules and tissue in the range of EMR spectrum detectable by 

spectrometers.  

Leaf spectroscopy provides a good basis for building spectral libraries. Canopy reflectance supports scale-up 

the models of symptom detection calibrated at leaf scale towards broad-scale monitoring of crops. Figure 4 

illustrates part of leaf and canopy spectra relevant to different stressors i.e., drought, salinity, herbicide, 

nitrogen, ozone, and pathogen. Such as.  
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1. In stress conditions, depleted chlorophyll can be detected in a broad spectrum as low reflection at 

530-630 nm, and increased reflection at 700 nm in visible domain. Chlorophyll absorbs light in specific 

spectral bands which hyperspectral sensors can better detect by analyzing reflectance spectra. 

2. Reflectance around 960 nm is affected by cell elasticity, which decreases when the plant is subjected 

to drought. Stomatal closure can raise leaf temperature and it can be seen in the infrared range.  

3. The blue and red regions can be indicators of salt stress and are useful in characterizations of 

chlorophyll content, photosynthetic activity, and cellular architecture. 

4. Salt stress causes closing and limiting of mesophyll stomata, or changes in cellular metabolism which 

adversely impact photosynthetic processes (Sytar et al. 2017).  

5. Changes in the leaf structure and moisture content are associated with a reduction in reflection in 

the NIR region, which is also regarded as a reliable predictor of changes to canopy structure (Franke 

and Menz, 2007).  

6. Plant leaves become discolored and disfigured due to inadequate nutrition, it can be seen in the 

visible and shortwave region (1325 – 1575 nm) owing to pigmentation changes and the yellowing of 

leaves leads to higher reflectance in the green-red region (Li et al. 2020).   

7. In necrosis state, reflectance increases in the visible range while in non-necrotic areas, the 

reflectance decreases.  

8. Nitrogen deficiency is the most studied stress followed by phosphorus, iron, and sulfur. Because it 

directly affects plant productivity. As it affects only a part of the leaf (young or old), the resulting 

symptoms become difficult to detect over a complex canopy with mixed leaf ages. For that reason, 

the coupling of leaf- and canopy-scale measurements is often recommended. Plant response from 

nitrogen deficiency can coincide with phosphorus deficiency, but it was possible to diagnose P 

deficiency 15 to 24 days in advance at leaf scale using Independent Component Analysis (ICA) for 

feature extraction. 

9. Physical characteristics of leaves can also help in stress detection such as changes in tissue 

morphology, cell wall characteristics, and epidermal thickness, influence the leaf's spectral 

characteristics. These changes are mostly detected by lab techniques e.g., tissue sectioning, Scanning 

Electron Microscopy, Transmission Electron Microscopy (TEM). However, UAVs can also provide 

finer-scale data for more localized assessments of vegetation health and potentially detect changes 

in tissue morphology. 

 

3.5 Crop stressors, their effects, associated symptoms in crop traits, and 
key measuring variables 
 

Crop stressors can manifest in various ways, and their symptoms can be observed in different crop traits. 

Some stressors and their effects are:  

• Soil waterlogging which is usually caused by severe weather conditions, such as flooding, heavy rain, 

and storms. It can cause plants to suffer from water deficiency by blocking their stomata due to the 

lack of oxygen (Kaur et al. 2020).  
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• Severe drought stress causes the loss of leaf moisture resulting into wilting and curling of leaves, and 

drooping of branches, followed by the degradation of chlorophyll levels and an overall reduction in 

leaf surface area. In fact, minor to moderate drought conditions can affect the concentration of 

carotenoids in plants.  

• Salt accumulation causes degeneration of leaf tissue and changes the interactions between plants 

and water and nutrients, resulting in a reduction of chlorophyll and disease resistance (Lassalle, 2021) 

that causes subtle discoloration or yellowing of the leaves. It has been mostly addressed in grass and 

shrublands under controlled environment studies (greenhouses).  

• Heavy metals have long-lasting effects for example they are easily absorbed by plants leading to 

inhibition of their growth. Moreover, the pollutants can also make their way into the food chain, 

potentially posing grave health risks (Wang et al. 2018). Metallic stress can affect plant metabolism, 

mineral nutrient transport, and water uptake, and can alter pigmentation and leaf structure (Ruffing 

et al. 2021). The heavy metal stress in rice plants minimizes water absorption and ion channel 

function, because of which the plants usually suffer from water shortages and excessive amounts of 

free proline accumulations, which measurement could be an indicator (Choudhary et al. 2007).  

Both monitoring of nutrient deficiency and gas stress monitoring coincides in their reflectance, data 

processing, and methods are quite similar, which could be beneficial. As with most of the stresses, common 

plant symptom is increased reflectivity in green areas as chlorophyll levels are reduced (Goldsmith et al. 2020). 

Moreover, changes in reflectance between species with different leaf morphologies may differ significantly. 

Spectral signatures can measure and detect these stressors. Table 3 presents some common crop stressors, 

their associated symptoms in crop traits, and key measuring variables with spectral signatures. This table can 

assist in choosing future datasets to monitor key crop stressors and their associated measuring variables. 

Table 3. describes associated symptoms, key leaf and canopy variables and detectable spectral signatures of 

some prominent crop stressors. 

Crop Stressor Crop Traits/Symptoms Key Measuring Variable Spectral Signature 
Lodging  Morphology, flattened or 

bent canopy structure, 
shadowing, changes in 
vegetation density 

Canopy Height, light interception, 
leaf orientation (horizontal) 

Lower reflectance in NIR 
and SWIR 

Nutrient Deficiency Growth and Maintenance, 
decreased chlorophyll 
content, changes in leaf 
structure and pigment 
content 

Chlorophyll content, 
Photosynthesis Efficiency, Carbon 
assimilation rates, nutrient uptake 
efficiency  

lower reflectance in the 
red and blue 

Drought Stress reduced leaf turgor, 
morphology, degradation of 
chlorophyll levels, 
decreased water content 
and changes in leaf angle.   

Canopy Temperature, 
Transpiration, Precipitation, 
Radiation, Daily maximum and 
minimum Temperature, Crop 
water stress Index, Leaf water 
content, Chlorophyll content, LAI, 
carotenoids 

reduced absorption in the 
NIR and SWIR, increased 
reflectance in the visible 
portion 
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Salinity and Water 
logging 

Tissue degeneration, 
reduction of chlorophyll, 
discoloration or yellowing 
of the leaves 

Chlorophyll and water content increased absorption in the 
NIR and SWIR 
decreased reflectance in 
the visible portion 

Heavy metals Metabolism, mostly 
physiological changes in 
leaf morphology and 
pigmentation, reduction in 
water and ions absorption, 
stress-induced chlorosis 
(yellowing of leaves), 
spread not uniform across a 
field 

Proline content, soil quality and 
composition data, fluorescence in 
plant tissues 

Unique absorption bands 
in the visible or NIR regions 
for Pb and Cd 
increased reflectance at 
specific NIR wavelengths 
for Cu 
Hg induce fluorescence in 
plant tissues 

Disease or Pest 
infestation 

altered pigment 
concentrations, water 
content variations 

texture and structure of plant 
stems and leaves 

variations in reflectance in 
the visible range, unique 
spectral features, dips, or 
peaks at specific 
wavelengths 

Heat Stress High temperature 
conditions, changes in leaf 
structure and pigments 

Leaf Temperature, Chlorophyll 
content, water content, leaf 
pigments 

High reflectance in the 
longwave infrared (LWIR) 
region, some signatures in 
visible and NIR, lower 
reflectance in red and blue  
changes in the position and 
shape of absorption 
features in SWIR. 
 

 

All stressors do not affect plant reflectance exactly in the same way and at the same time, so they can be 

distinguished by exploiting the time and amplitude differences of reflectance changes which can differentiate 

among stressors. The specific spectral responses to crop stressors can vary depending on crop type, stress 

severity, and timing of stress development. Spectral screening methods can disentangle abiotic and biotic 

stress sources, most studies at this stage are still focused on a single stress level. Detection of coexisting 

stresses remains challenging and under-explored. Combining data from optical sensors, such as multispectral 

and hyperspectral imagery, with data from other sensors like thermal infrared, microwave, and LIDAR, allows 

for a more comprehensive assessment of crop health. Integration is essential for gaining more accurate and 

precise measurements and it will reduce errors and uncertainties in the results. Information from Sentinel-2 

on soil moisture and vegetation indices can be combined with EnMap's hyperspectral data about crop 

stressors at a more detailed level. Combining both data sources will provide insights into spatial variations in 

crop stressors. Similarly, PRISMA's hyperspectral data, with its fine spectral resolution, can provide detailed 

information about the biochemical and physiological status of crops. Merging PRISMA data with Sentinel's 

multispectral data can allow frequent and wide area monitoring of crop health. However, combining data 

from Sentinel, EnMap, and PRISMA, for crop stress monitoring requires careful calibration and correction to 

ensure that the data from various sources are consistent, accurate, and compatible.  It requires a series of 

steps such as sensor-specific radiometric calibration, atmospheric correction, georeferencing, spectral band 
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alignment, spectral smoothing, temporal alignment as well as sensor-specific noise and uncertainty 

adjustment. Most importantly, data fusion techniques can merge information from different sensors into a 

single dataset seamlessly are needed. This can involve using statistical or mathematical methods to harmonize 

data. Then these sensors can complement each other in cross-validating and calibrating. This will ensure data 

accuracy and reliability, which is essential for making informed decisions in crop stress management. 

4. KEY METHODOGIES OF CROP STRESS DETECTION AND 
MONITORING  

 

Laboratory and field-based controlled experiments are the most common approach for assessing the response 

of one or more crop species to single or several combined stressors, and for determining the influence of 

environmental variables on this response. Lab-based experiments are reproducible and give a full control of 

the stressor intensity, timing, and duration of exposure. Also, they are well suited for scaling-up the methods 

from proximal leaf- and canopy-scale measurements to broad-scale imaging. For instance, by identifying the 

wavelengths affected by the stressor one can create stressor-specific Vegetation Indices (VI), this method has 

found to be suitable for heavy metals and salinity contaminations. However, several stress monitoring 

methods have also developed without controlled experiments in field or imaging spectroscopy for pest 

diseases; soil contaminates and natural ecosystems but mostly are not aimed for broad-scale monitoring. 

Spectral data from remote sensing and ground-based sensors is increasingly processed and analyzed using 

machine learning algorithms. These algorithms can identify patterns and correlations between various data 

points, helping to detect and predict crop stress thereby being quite useful for pattern recognition, automated 

detection, predictive modeling, data fusion and real-time monitoring. The integration of advanced 

technologies and data-driven approaches continues to enhance our ability to monitor and manage crop stress 

effectively.  

The subsections below discuss various methods, including vegetation indices based empirical approaches 

radiative transfer models (RTMs), machine learning, and deep learning, for monitoring and managing crop 

stress.  

4.1 Deriving sensor-based crop stress indices 
 

Multispectral sensor-based crop stress indices are valuable tools for monitoring crop health and identifying 

stress factors such as drought, nutrient deficiencies, pest infestations, or disease outbreaks. The choice of 

index depends on the specific crop, the type of stress being assessed, and the availability of multispectral data 

as shown in table 4.  For example, Sentinel 2 based Canopy Chlorophyll Content Index (CCCI) has been used 

for estimating chlorophyll content in maize. The NDVI is a key indicator of crop stress, as it reflects changes in 

vegetation density, photosynthetic activity, and overall health. Decreased NDVI values can indicate stressors 

like drought, disease, or nutrient deficiencies. Enhanced vegetation index (EVI) is an improvement over NDVI 

that corrects for atmospheric influences and enhances sensitivity to changes in vegetation canopy. NDWI 

which is sensitive to changes in water content in vegetation, can be used to detect water stress and areas 



EO4CEREALSTRESS                                
Reference: ESA AO/1-11144/22/I-EF  

Number: D1.1 - Requirement baseline review document   

Version: 2.0 

Version 1 Date: 18 OCT 2023  Version 2 Date: 8 DEC 2023                                                                                                                                                                   

   

                                                                                                                                                                       

 

24 | P a g e  

 

affected by flooding or waterlogging. LAI is valuable for understanding crop growth and stress. A decrease in 

LAI can be indicative of stressors such as drought or pest infestations. New indices are developing with 

emerging sensor technologies like the indices created by the red edge (RE) bands (680–780 nm) which are 

useful to enhance the precision of the estimates. Cui et al. (2019) succeeded in increasing the accuracy of 

predicated LCC by proposing a new VI called red edge chlorophyll absorption index (RECAI) and integrating it 

with classical VI (TVI). Also, short wave Infrared domain directly and Red-Edge bands can be indirectly 

correlated with water status by affecting chlorophyll concentration. Currently multiple indices in combination 

are used to gain a more comprehensive understanding of vegetation characteristics and conditions. Further, 

temporal analysis of spectral indices can monitor the progression and persistence of stressors and can provide 

insights into the dynamic nature of crop stress. Table 4 shows some key indices specific to certain stressors, 

they can be used as single or in merger for single or multiple stressors.  

Table 4. List of key spectral indices and their application for crop stress detection. 

Vegetation indices Formula Application 
Normalized difference Vegetation 
Index (NDVI)  

(NIR - Red) / (NIR + Red) Drought and Nutrient deficiency 

Enhanced Vegetation Index (EVI) 2.5 * ((NIR - Red) / (NIR + 6 * Red - 7.5 
* Blue + 1)) 

Used for monitoring the condition of 

vegetation, especially in complex 

canopies or where vegetation stress 

may be a concern 

Water Stress Index (WSI)  ((SWIR - NIR) / (SWIR + NIR)) For water stress detection 

Water Deficit Index (WDI) WDI = PET – AET 
ET calculation using Penman-
Monteith equation, the Thornthwaite 
equation, or the Hargreaves-Samani 
method. 

for assessing water stress or drought 
conditions 

Chlorophyll Content Index (CCI) (RedEdge - Red) / (RedEdge + Red)
  

detect nutrient deficiencies and 

disease stress 

Soil Adjusted Vegetation Index (SAVI 
or SAVI2) 

SAVI = ((NIR - Red) / (NIR + Red + L)) * 
(1 + L) 
L = soil adjustment factor 
SAVI2 = ((NIR - Red) / (NIR + Red + L1)) 
* (1 + L2) 
L1, L2 = constants for soil adjustment 
factor  

used for monitoring vegetation 
health and detecting changes over 
time particularly in agricultural and 
arid regions where soil brightness 
affects vegetation index values. 
 

vegetation temperature condition 
index (VTCI) 

(Tc - T_max) / (T_max - T_min) 
Tc = current temperature of the 
vegetation (e.g., from thermal 
infrared data) 
T_max = maximum temperature for 
healthy plant 
T_min = minimum temperature for 
healthy plant 

assessing the impact of factors like 
drought, disease, or environmental 
stress on vegetation temperature 
condition 
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Radar Vegetation Index (RVI) (σ_vv - σ_hh) / (σ_vv + σ_hh) 
σ_vv = radar backscatter in the 
vertical polarization (VV) channel. 
σ_hh = radar backscatter in the 
horizontal polarization (HH) channel. 

for vegetation analysis in challenging 
environmental conditions (clouds) 
 

Crop Water Stress Index (CWSI) CWSI = (Tc - Te) / (Tc - Td) 
Tc = canopy T 
Te = reference T for well-watered crop  
Td = Dewpoint T  

Used for monitoring crop water 
stress levels and guiding irrigation 
management decisions. 
 

Red Edge Chlorophyll Absorption 
Index (RECI) 

(NIR/Red Edge) - 1 
 

for assessing chlorophyll content and 
plant health 
 

Normalized Difference Red Edge 
(NDRE) 

(NIR - Red Edge) / (NIR + Red Edge) for detecting subtle changes in 
chlorophyll content and can reveal 
early signs of stress 

Green Normalized difference 
Vegetation Index (GNDVI) 

(NIR - Green) / (NIR + Green) for detecting stress in crops with 

senescing or yellowing leaves 

Temperature vegetation dryness 
index (TVDI) 

TVDI = VTCI * NDVI for combined effects of temperature 
and vegetation health on water 
stress 

Plant Stress Index (PSI) PSI = (R - NIR) / (R + NIR) * (R - SWIR) / 
(R + SWIR) 

to assess plant health and stress 
levels. 

Normalized difference Water Index 
(NDWI) 

 changes in water content in 
vegetation 

photochemical reflectance index 
(PRI) 

PRI = (ρ 531 - ρ 570) / (ρ 531 + ρ 570) 
ρ = reflectance value at 531 nm and 
570 nm wavelength in the green 
region1 

sensitive to changes in chlorophyll 
content and the xanthophyll cycle, 
due to factors like water stress, light 
stress, or nutrient deficiencies 

Soil Moisture Index (SMI) SMI = (Current VMC - Wilting Point) / 
(Field Capacity - Wilting Point) 
VMC = Volumetric water content 
expressed as %  

help identify areas of water stress or 
excessive moisture 

Meris Terrestrial Chlorophyll Index 
(MTCI) 

MTCI = (ρ800 - ρ680) / (ρ800 - ρ670) 
ρ = reflectance values at specific 
wavelengths (800, 680 and 670 nm) in 
the NIR and red regions. 2 
(https://www.indexdatabase.de/db/i-
single.php?id=169 ) 

Sensitive to variation in chlorophyll 
content 

 

Sometimes, selecting the right indices is crucial because different stressors may exhibit unique spectral 

signatures. Like, changes in canopy temperature are not just in response to biotic stresses but can be due to 

abiotic stress. Nitrogen deficiency (N) and water stress (drought and salinity) are the most prevalent limiting 

conditions for crop production, and they commonly co-occur. Using crop water stress index (CWSI) and water 

 

1 The specific bands may vary based on the band combination of each sensor or instrument. 
2 The specific bands may vary based on the band combination of each sensor or instrument. 
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deficit index (WDI) together can estimate the physiological impacts of water stress and N nutrition separately, 

and their interactive effects can also be addressed (Zhao et al. 2022). Most of the spectral indices are not able 

to distinguish between short- or long-term drought stress, for which hyperspectral signatures can be useful, 

because they provide a much finer level of spectral detail compared to traditional multispectral data.  Short-

term drought stress may primarily affect the upper canopy, leading to specific changes in chlorophyll content 

and water content. On the other hand, long-term drought stress can cause more significant structural changes 

within the plant, leading to altered lignin and cellulose content. Hyperspectral data can capture these nuanced 

differences. Water-deficit has been subject to numerous studies for decades from small-scale greenhouse 

trials with individual plant pots and various levels of irrigation based on the soil's field capacity to the species' 

needs in irrigation at large scale. Monitoring water-deficit from hyperspectral data typically follows three 

different approaches [1] detecting alterations in leaf water content through developing VIs from leaf and 

canopy spectra to establishing a threshold and linking it to regression models,[2] Using ML regression 

algorithms for predicting physiological parameters affected by water deficiency, such as leaf water potential, 

stomatal conductance, and non-photochemical quenching. [3] Through VIs and ML tracking early alterations 

in leaf pigments and plant development (e.g., LAI, ground cover) resulting from water-deficit.  

4.2 Feature Extraction and Feature Selection 
 

Feature extraction and feature selection are two essential techniques in dealing with spectral data, as they 

help in reducing the dimensionality of sensor’s data, enhancing the quality of information, and improving the 

efficiency of data analysis. Extraction involves transforming raw data into a set of meaningful and informative 

features. This process aims to highlight the relevant information in the data while reducing redundancy. While 

selection involves choosing a subset of the most relevant features from the original dataset. The purpose is to 

eliminate irrelevant or redundant features. The most used techniques are principal component analysis (PCA), 

Partial Least Squares Regression (PLS), and linear discriminate analysis (LDA). PCA is primarily a dimensionality 

reduction technique. It identifies and transforms correlated variables (features) into a new set of uncorrelated 

variables called principal components while retaining as much of the original data's variability as possible. 

These components capture the most variance in the data. PLS, unlike PCA, is more of a feature selection and 

regression technique. It finds a set of orthogonal factors that explain the maximum variance in the response 

variable (dependent variable) by modeling the relationship between features and the crop response. It selects 

a subset of features that contribute the most to predicting the targeted stress. LDA is another feature selection 

technique primarily used in the context of supervised classification. It finds the linear combinations of features 

(discriminant functions) that maximize the separation between different classes that could be stress levels. It 

is used for pattern recognition, classification, and reducing the dimensionality of feature space while 

enhancing the class separability. It helps identify the most discriminative features. However, algorithms based 

on metaheuristic approaches such as genetic algorithms (GA) are gaining ground in the field of feature 

selection. The features are then used in the training phase to build the ML model.  

These methods are common in hyperspectral remote sensing in which its better helps in identifying the 

characteristic spectral bands sensitive to material concentration in plants, and thereby establishing the 

relationships between plant response and environmental stress (Herrmann et al. 2010). The preprocessing of 
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spectra applying techniques such as Continuum Removal (CR), Multiplicative Scatter Correction (MSC). The CR 

eliminates the background signal or "continuum" from a spectrum that is unrelated to the crop physical 

properties of interest, leaving only the relevant spectral features. Other technique, MSC normalize spectral 

data by fitting a model to the measured spectrum and dividing the spectrum by this modeled scatter 

component. This process helps to reduce unwanted spectral variability and scatter in the measurements. 

These preprocessing techniques are critical for improving the quality of spectral data, reducing noise, and 

making it more amenable to analysis and further processing. There can be two ways of processing spectra, 

either integrating complete reflectance directly into machine learning algorithms, or converting spectral 

signatures into abstracted variables. The former method complicates choosing optimal wavelengths for 

monitoring a particular stressor. Therefore, spectral signatures must often be converted into abstract 

variables, such as principal components, to reduce dimensionality or select features. Or developing spectral 

reflectance indices (SRIs) that are related to plant characteristics, such as chlorophyll and water content, can 

be useful for subsequent analyses to assess plant status. In fact, indices based on WC, photosynthetic 

efficiency, pigment content, and red/NIR reflectance, and their driven regression models (SRI (spectral 

reflectance indices) based models) compared to machine learning methods like PLS that uses all available 

wavelengths including noises, are better in predicting physiological traits based on hyperspectral data. 

The wavelet transform (WT) method is one of the viable methods for analyzing the hyperspectral spectrum 

that converts the original reflectance spectrum into coefficients resolving at high scales (e.g., small narrow 

bandwidth absorption features) and low scales (e.g., broad absorption features). Other examples are 

successive projections algorithms (SPA), Recursive Feature Elimination (RFE) and ICA. SPA is widely used in the 

wavelength selection of spectral data. Its advantage is extracting several wavelengths from the whole band in 

faster and efficient way, which eliminates the redundant information in the original spectral matrix. It starts 

with an empty set of selected features and iteratively adds one feature at a time to the selected set. At each 

step, the algorithm selects the feature that provides the best discrimination between classes or maximizes 

some relevant criterion. This process continues until the desired number of features is reached or a predefined 

stopping criterion is met just like forward selection. RFE starts with the entire feature set and repeatedly trains 

a model, such as a machine learning classifier, and removes the least important features. This process 

continues until the desired number of features is reached or a predefined stopping criterion is met. Thereby 

it eliminates the redundancy of features, select the optimal feature combination, and reduce the feature 

dimension. Like SPA, RFE also a type of wrapper method. They can be computationally intensive, especially 

for large feature sets, However, their accuracy for hyperspectral data is comparable in lodging stress detection 

(Sun et al. 2023). Unlike them, ICA can separate a set of observed mixed signals into statistically independent 

and non-gaussian source signals or components assuming that the observed signals are linear combinations 

of these hidden source signals but with different mixing coefficients.  

Feature selection plays a vital role in machine learning as it helps determine the best set of features to create 

an effective machine learning regression MLR model. It is more advisable to first evaluate the plant's spectral 

signature to identify the level of stress at which the plant has been exposed, deriving from graphical analysis 

of leaf and canopy spectra. Later, dividing data analysis into three general approaches: statistical analysis, 

prediction models, and classification models. In this step, multiscale spectral indices are more appropriate as 

compared to indices based on a single scale. The reason is leaf-scale hyperspectral measurements are less 
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sensitive to external conditions such as lighting, climate, and humidity when compared to canopy-scale 

measurements. Leaf scale measurements reflect the effect on leaf biochemical characteristics. While canopy 

scale studies assess the effect on the structure of plants. Thus, combining multiscale spectra will reduce 

inherent bias in scale transferability.  

4.3 Deriving Crop traits from Radiative Transfer Models 
 

Compared with VIs retrieval directly from satellite, RTM have clear advantages for global applications, because 

they are based on physical laws and therefore generally applicable. They are mainly used for physical based 

retrieval of crop characteristics for improved quantification of their responses to environmental changes. 

RTMs allow the conversion of remote sensing signals into valuable vegetation biophysical information, which 

is used for analysis with other datasets. They can be simplified using tools such as Simulated Look-Up Tables 

(LUT) and trained Artificial Neural Networks (ANN) however simplification may lead to some loss of accuracy. 

Mostly RTMs are complex and nonlinear, their simulation shows quantitative relationships between plant 

biochemical parameters and leaf/canopy spectra. Also, it helps in investigating plant physiological changes 

with environmental conditions and can detect alterations in leaf/canopy structures and their biochemical 

parameters through reflectance and transmittance signals. They considered better than VI based regression 

models. RTMs can be used to monitor various aspects of crop health, including chlorophyll content, leaf area 

index, and vegetation cover. To retrieve plant variables, the RTM inversion scheme needs to be applied to the 

reflectance data. The inversion gives best match between a simulated and measured reflectance spectrum.   

Among RTMs, The PROSPECT model and its improved versions are most widely used RTM that can accurately 

simulate radiative transfer in leaves. Initially PROSPECT model was simple and required only three input 

parameters: structure parameter (N), chlorophyll content (Cab), and equivalent water thickness (Cw).  It is 

advanced to the PROSPECT-4 model capable of simulating directional-hemispherical reflectance and 

transmittance for a single leaf. It is further optimized with additional parameter Cm (dry matter) for simulating 

EMR absorption and reflectance through internal parts i.e., cellulose and lignin it was further upgraded to 

PROSPECT-5 to separate chlorophyll into chlorophyll and carotenoids at tissue level which is validated through 

several independent datasets (Feret et al. 2008). PROPECT-D model formed with addition of anthocyanin in 

PROSPECT-5 along with chlorophylls and carotenoids for the dynamic simulation of leaf optical properties 

throughout a complete lifecycle (Feret et al. 2017). However, the most recent PROSPECT PRO allows for 

decomposition of leaf dry matter into nitrogen-based proteins and carbon-based constituents and is capable 

of modelling leaf proteins as well as cellulose, lignin, hemicellulose, starch, and sugars (Feret et al. 2021). 

PROSAIL, which is an integration of the leaf level PROSPECT model and canopy-level SAIL (Scattering by 

Arbitrary Inclined Leaves) model, is also a very common leaf and canopy RTMs. Both have continuously been 

revised and improved. For example, 4SAIL2, which is an amended version of the turbid medium SAIL model, 

simulates the top of the canopy reflectance. This model is a function of a series of variables: The fraction of 

brown canopy area (fB), the dissociation factor (D), hotspot (hot), tree shape factor (Zeta), crown cover (Cv), 

leaf area index (LAI), and leaf inclination distribution function (LIDF a and b). PROSAIL a 1D model is more 

suitable for crop and grass than forest canopies because it assumes that a vegetation canopy is a turbid 

medium. Due to its simplicity and reasonable accuracy, it is suitable for satellite applications. Another RTM 
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model example is SPART in which PROSPECT-D and SAILH with hotspot effects is used (Feret et al. 2017). It 

includes the absorption of chlorophylls, carotenoids and anthocyanins pigments and requires the content of 

these leaf pigments, senescent materials, water content, dry matter, and leaf internal structure as input. 

SPART can up-scale leaf optical properties (i.e., leaf reflectance and transmittance) to canopy optical signals 

by considering the canopy architecture. Some of the RTM models and their application in crop stress 

monitoring is shown in Table 5.  

Table 5. Some common radiative transfer models used in crop stress studies.   

Radiative transfer models  Function Usage  

Soil Leaf Canopy [PROSPECT 4 

leaf RTM, 4SAIL2 canopy RTM, 

Soil Model Hapke] 

simulates canopy reflectance 

over the spectral range [400 and 

2500 nm] with a spectral 

resolution of 1 nm. 

 

require less parameters  

 

Quantifies fCover by simulating 

reflectance by most of the input 

variables (e.g., chlorophyll, water 

content etc.)  

Discrete anisotropic radiative 

transfer DART 

simulates multiple scattering in 

heterogeneous 3-D scenes.  

require a higher number of input 

variables 

Used for spatially heterogenous 

dense canopy  

PROSAIL [PROSPECT D – leaf RTM 

and the canopy bidirectional 

reflectance model (4SAIL)] 

requires only a few input 

variables. 

especially efficient to large 

images 

Used for retrieving green fraction 

(GF), LAI, LCC and canopy 

chlorophyll content (CCC) 

Soil Canopy Observation of 

Photosynthesis and Energy fluxes 

SCOPE [ seven RTMS –one for 

leaf, 5 for whole stand, one for 

soil BSM]  

Simulates solar-induced 

chlorophyll fluorescence (SIF), 

energy balance fluxes, 

gross primary productivity (GPP) 

and directional thermal signals 

Used for homogenous complex 

multilayer canopies, investigates 

vegetation physiology under 

various weather conditions 

 

Regarding RTM application, the first synthetic dataset is prepared for model validation, sensitivity analysis, 

training of machine learning model and algorithm development. It is comprised of information about sensors, 

vegetation, soil, and atmosphere e.g., soil properties, leaf properties, canopy structure, sun-observer 

geometry, and the corresponding TOA radiance. The choice of RTM varies by different scenarios such as 

PROSAIL used for soil and canopy characteristics, MODTRAN for simulation of atmospheric conditions. To 

make the synthetic dataset more realistic, some noise, random variations and uncertainties are added to the 

simulated measurements. Prior to use as RTM input, synthetic data is first tested and validated with ground 
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dataset to ensure its accurate representation of crop stress scenario. Some common parameters used in RTMs 

are Optical Thickness (τ), Single Scattering Albedo (ω0), Phase Function (P(θ)), Albedo (ρ), Reflectance (R) and 

Transmittance (T), Absorption Coefficient (α), Leaf Area Index (LAI), Leaf Inclination Distribution Function 

(LIDF) and atmospheric parameters include atmospheric pressure, temperature, humidity, aerosol properties, 

and gas concentrations. RTMs can be highly specialized for applications, such as atmospheric radiative 

transfer, vegetation modeling, or crop remote sensing, which further influences the parameter choice. 

Accurate initial parameter values can improve the accuracy of the RTM's simulations. This is especially 

important when fine-tuning RTMs for crop applications or when using them for inversion (retrieving model 

parameters from observed data), some parameter used as input and can be retrieved from RTMs are provided 

in Table 6. 

Table 6 List of the parameters used often in RTM models, ranges and initial values may differ case by case 

depending on the specific application, the target material or medium, and the instrument or sensor being 

used.  

Parameter Description Unit Range Initial value 

B Soil brightness – [0,0.9] 0.5 

φ Soil spectral latitude Degree [−30,30] 0 

λ Soil spectral longitude Degree [80,120] 100 

SMp Soil moisture volume 

percentage 

– [5,55] 20 

Cab Chlorophyll a and b content μg cm-2 [0,80] 40 

Cdm Dry mass per unit leaf area g cm-2 [0,0.02] 0.01 

Cw Equivalent water thickness cm [0,0.1] 0.02 

Cs Senescent materials – [0,1] 0 

Cca Carotenoid content μg cm-2 [0,30] 10 

N Leaf internal structure 

parameter 

– [1,4] 1.5 

LAI Leaf area index m2 m2 [0,7] 3 

LIDFa Leaf inclination 

determination parameter a 

– [−1,1] −0.35 

LIDFb Leaf inclination 

determination parameter b 

– [−1,1] −0.15 
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AOT550 Aerosol optical thickness at 

550 nm 

– [0,2] 0.325 

UO3 Ozone content cm-atm [0,0.8] 0.35 

UH2O Water vapour g cm-2 [0,8.5] 1.41 

 

A significant challenge in applying RTM inversion mode is the issue of "ill-posedness" which means there can 

be multiple different combinations of model parameters that can reproduce an observed spectrum. This 

challenge complicates the accurate interpretation of remote sensing data and necessitates careful 

consideration of uncertainties in the inversion process. It is resolved by various statistical means such as 

numerical optimization, look-up table (LUT)-based inversion and hybrid approaches. All these approaches 

have their own advantage such as Numerical optimization minimizes a cost function value between the 

measured and predicted reflectance spectrum in an iterative manner. This method requires significant 

computing power and is time-intensive if applied to a huge number of pixels. In contrast, the LUT-approach 

uses a high number of simulations to produce several hundred or thousand reflectance spectra from 

numerous combinations of input variables. Hybrid approaches combine the fast computation power of 

machine learning and generalization level of RTMs.  In this approach, RTM simulations are used as training 

data, leaving ground measurements only for validation. Yang et al. (2021) provided an improved retrieval of 

land surface biophysical variables from time series of Sentinel-3 OLCI TOA spectral observations by considering 

the temporal autocorrelation of surface and atmospheric properties, this has reduced inversion problem – ill 

posedness, in which multi-sensor integration takes place at the lower-level product of TOA radiance by using 

SPART model, instead at the higher product scale (e.g., LAI and fPAR). Thus, retrieval of land surface properties 

can be directly from OLCI TOA observations without atmospheric correction. In this way, the temporal 

continuity of the land surface and atmospheric properties used as prior information reduces the ill-posedness 

of model inversion problems and improves the retrieval accuracy. It helps to mitigate unrealistic short-term 

changes in the retrieved variables (FAPAR, LAI). 

Besides retrievals, RTM can have multiple advantages. They can be combined with crop growth model (CGM) 

or process-based models, vegetation growth and prognostic phenology models (Fang et al. 2008) to get 

information about how crop changes over time in response to environmental conditions. By using crop 

models, RTMs can be trained, constrained, and the uncertainties in their biochemical retrievals can be reduced 

likewise. It allows for better parameterization of the RTMs and helps to match model outputs with observed 

data, leading to more reliable and meaningful results (e.g., Verrelst et al. 2015).  Therefore, coupling of 

Radiative Transfer Models (RTMs) with other models gives more comprehensive analysis and monitoring of 

crop health. The Soil-Plant-Atmosphere (SPA) model, simulate water movement in the soil and its effect on 

plant water stress its integration with an RTM simulates changes in soil moisture and its influence on canopy 

reflectance and temperature, aiding in the detection of drought stress. Coupling with crop growth models like 

DSSAT allows researchers to simulate crop development and stress responses such as crop phenology, leaf 

area index, and nutrient uptake, helping to detect nutrient deficiencies or disease-induced stress. Coupling an 

RTM with a regional climate model provide insights into how variations in temperature, precipitation, and 
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solar radiation influence crop health. Machine learning models, such as neural networks or random forests, 

can be trained using synthetic data generated by RTMs to detect crop stress from remotely sensed imagery. 

The combination of RTMs and machine learning enables the development of accurate stress detection 

algorithms. In some studies, LUT approach is used in which a discrete sample of model input is extracted from 

the full parameter space, and the corresponding model output is simulated by the forward radiative transfer 

model. Some studies used emulators as facilitators for developing simple relationships between model input 

and output by relying on machine learning techniques (Berger et al. 2020; Verrelst et al. 2019).  

 

4.4 Applying Empirical Regression Models  
 

Empirical regression methods use a learning dataset to calibrate a parametric or non-parametric model. The 

learning dataset consists of independent variables and dependent variables, where the independent variables 

can be spectral reflectance from multispectral/ hyperspectral image, vegetation indices, principal 

components, and even contextual descriptors. Dependent variable could be cropping performance related 

indicators like GPP, Yield, Biomass, Productivity and so on. The learning data can be generated using field 

experimental measurements of crop stress related variables, e.g., chlorophyll content, water content, LAI etc. 

In such cases, the resolution of the outcome stress variable map is determined by the scale of experimental 

measurement, for instance, measurements taken at a 10 m by 10 m sample plot, resulting in the degraded 

resolution of aerial mapping, if the parametric approach is used, non-parametric models have gained more 

attention (Zhang et al. 2021). Or otherwise the original resolution can be maintained through a wall-to-wall 

UAV map which requires rigorous and challenging co-registration between the two data sources i.e., satellite 

images and airborne images. The other challenge is empirical functions are constrained by the 

representativeness of the calibration dataset over the targeted areas that are related to atmospheric 

conditions, sun-sensor geometry, land cover (vegetation type, tree species even crop cultivar), phenological 

stages, and topography (Baret and Buis, 2008). So, when an empirical inverse model is calibrated over one 

scene applied to a new scene, it usually requires re-calibration based on the learning data of the new scene. 

In parallel, processed spectral signal-based regression models have a wide range of applications, including 

estimating crop yields, and monitoring soil properties. Once spectral data is collected from appropriate 

sensors, instruments, or spectroscopy techniques across a range of wavelengths. This data is preprocessed by 

various techniques like baseline correction, noise reduction, and wavelength selection to improve data 

quality. Then relevant features or spectral indices from the processed data are extracted for regression tasks.   

Regression models are versatile tools applicable to various scenarios with both small and large numbers of 

variables. The choice of the specific regression model depends on the characteristics of the data and the goals 

of the analysis. For instance, a study by Asargew et al. (2024) conducted a glasshouse experiment to 

investigate changes in the linear relationship between stomatal conductance (gs) and photosynthesis (An) 

owing to water stress in rice and the association with soil moisture content. They employed a linear regression 

model- Ball-Woodrow-Berry to identify water stress in rice crops by analyzing relationship between gs and An. 

They found severe water stress had a significant effect and can reduce the slope of the linear relationship 

between gs and An by 30 % compared with normal water stress. Only in severe stress conditions, An and gs 
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were strongly correlated with soil water content. For a relatively complex nature of the interactions with large 

set of variables polynomial regression technique is better.  For instance, Gomez et al. (2022) studied water 

stress mechanisms in commercial crops (pineapple) to explore the influence of plant metabolites on shoot 

biomass in response to water stress. The statistical analysis of relationships conducted between commonly 

used biochemical markers of water stress and growth in crops. The study highlighted the efficacy of 

polynomial regression in quantifying the influence of plant metabolites (chlorophylls, carotenoids, phenolics, 

and aldehydes) on shoot biomass in response to water stress (Gomez et al. 2022). When dealing with a larger 

number of variables, multiple regression or other advanced techniques can be employed. Such as an airborne 

survey over an experimental farm in Italy used airborne hyperspectral images to assess maize fields with 

different irrigation levels. Field measurements of crop indicators like leaf water content, chlorophyll 

fluorescence, leaf temperature, and leaf area index were then analyzed using an ordinal logit regression model 

(an extension of binary logistic regression to handle more than two ordered categories)3. Results indicated 

Photochemical Reflectance Index (PRI570) has strong relationships with LAI. PRI can be used in mapping stress 

classes and optimizing irrigation management in precision agriculture (Rossini et al. 2013). These examples 

illustrate the versatility of regression models in leveraging data of different types for crop stress detection and 

monitoring. 

 Some complex regression models are: 

1. Partial Least Squares Regression (PLSR): Effective for dealing with multicollinearity in 

spectral data. 

2. Support Vector Regression (SVR): Useful for modeling complex relationships. 

3. Random Forest Regression: Robust and capable of handling high-dimensional data. 

 

Because SVM and RF are non-linear, able to learn complex relationships and form high-dimensional datasets 

While using these high-performance models, the selected dataset is divided into training and testing subsets 

to evaluate model performance.  This division of dataset is not needed if performance check is done through 

k-fold cross-validation in which only one set of observations, is resampled automatically and iteratively that 

help in assessing model generalization. Hyperparameter tuning of the regression model is important for 

accurate results. It is done by adjusting parameters related to model complexity, regularization, or kernel 

functions (for SVR). Once the regression model is trained and evaluated satisfactorily, it can be deployed for 

making predictions on new, unseen spectral data. It is necessary to periodically retrain or update the 

regression model as new spectral data becomes available or as conditions change. However, low-quality data 

can adversely affect model performance. 

 

3 Ordinal logistic regression, also known as ordered logistic regression or proportional odds model, is a statistical 
technique used for modeling the relationship between an ordinal dependent variable and one or more independent 
variables. Ordinal variables are those that have a meaningful order but the intervals between the categories are not 
necessarily equal. Model assumes that the relationship between the independent variables and the cumulative odds of 
being at or below a particular category is the same for all levels of the dependent variable. 
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4.5 Applying Machine Learning  
 

Data-driven methods that include the development of vegetation indices in specific spectral bands and the 

construction of machine-learning inverse models require large sample data through field experiments. Those 

methods have certain shortcomings e.g., lack of theoretical support, low interpretability, lack of physical 

explanations of light transfer mechanics in plant leaves, and low generalization. Therefore, it is important to 

investigate the physical transmission of optical radiation in leaves, to gain a thorough understanding of the 

mechanisms of interaction between plant leaves and optical radiation and thus to develop plant 

physicochemical parameter detection methods with improved accuracies based on hyperspectral data. 

Machine learning approach has overpassed VI-based traditional diagnostic methods in performance. Some of 

the examples are: 

1. Classification models, which involve combining input variables to predict classes related to plant 

condition (healthy/stressed). The labeled training data could be reflectance or transformed-

reflectance (derivative, continuum removed, etc.) data, VI, or biochemical parameters retrieved 

by regression or RTM inversion. They can be assessed on a test dataset by comparing the 

predicted and true classes. Such methods can be applied to new reflectance measurements to 

predict plant stress but are skill- and computationally demanding.  

2. Advanced regression models use same training datasets as classification model and can ingest 

several inputs variables like classification models. They can predict a continuous response 

variable such as the stressor itself (e.g., concentration of soil contaminants) or a biochemical or 

physiological indicator of plant stress (e.g., pigment contents, stomatal conductance). However, 

a common challenge to these methods is data dimensionality issue, the information in each 

spectral region can be highly redundant, making it difficult to identify the most suitable bands to 

monitor a given stressor.  

3. Machine learning algorithms are being applied to remote sensing data for automated detection 

and classification of crop stressors. These algorithms can process vast datasets, identify patterns, 

and make predictions, enhancing the efficiency of crop monitoring and management. Several 

ML algorithms exist that can detect stress at an early stage and can distinguish plant stressors 

with similar effects on plant reflectance. Some can handle nonlinear relationships between the 

stressor intensity and the spectral response of plants. Some non-parametric examples are Linear 

or Quadratic Discriminant Analysis (LDA/QDA), Partial Least Square Regression (PLSR), Support 

Vector Machines (SVM), Random Forest (RF), Elastic net (ENET) regression, and Neural Networks 

(NNs). Their functional units and specific advantages are listed in Table 7. 

 

Table 7. Examples of Machine learning algorithms, their functional use and advantage for crop stress 

monitoring 

Methods Function Advantage 
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LDA linear combination of input variables into 
a reduced project space 

maximizes the separability of plant health 
classes 

PLSR a series of principal components (latent 
vectors) from the input variables  

Quantify plant stress 

SVM Separate the plant classes (e.g., 
healthy/stressed) by defining a linear 
function that minimizes a cost function 

maximizes the margins of a hyperplane and 
minimizes an approximation error 

RF averaging a series of independent decision 
trees to model the relationship between 
input variables and plant health classes 

handles nonlinear relationships and informs on 
the importance of each input variable 

ENET (penal- 
ized least square 
method) 

Uses Ridge and Lasso regression performs variable selection under 
multicollinearity 

NNs (Multilayer 
Perceptron) 

split layers in nodes which relate to those 
of another layer, layer can be reflectance 
data, VIs, or biochemical 

output layer returns the plant health (e.g. 
healthy/stressed) 

 

Some simple and advanced machine learning models, such as multivariate linear regression, random forest, 

artificial neural network, SVM, Gaussian process, and partial least square regression (PLSR), have been widely 

used to retrieve agricultural variables from RS data with the input of multiple features or continuous 

reflectance spectra (Schwieder et al. 2014). Nevertheless, training an SVM with high-dimensional data can be 

extremely slow, while ANN is prone to overfitting, and the parameter setting in ANN is more complicated. 

Compared to SVM and ANN, RF has proven to be a very robust machine learning algorithm for the retrieval of 

vegetation parameters, like CCC (Abdelbaki, et al. 2021). it has a high accuracy nearly 97%, can run effectively 

on huge datasets; is able to process input data with high-dimensional features. It can evaluate the importance 

of each variable. It can obtain unbiased estimates of internally generated errors. It can also give good results 

for the discrete values of inputs (Timsina et al. 2021).  

ML techniques are also an efficient way to merge datasets of different natures, such as integrating in-situ data 

(soil data, farming management practice data from field surveys, weather variables) with datasets from 

various RS sources. It allows the complex relationship between variables to be statistically characterized and 

permits real-time computations, which is of strong interest for agricultural applications. Most phenotypic 

studies concerned with multispectral cameras use ML algorithms to develop the relationship between 

vegetation indices and crop traits such as leaf area index (LAI), nitrogen content, and chlorophyll content. 

They are now the long-lasting goals for RS applications in agriculture to be met. The rapid improvements in 

machine learning and sensor technology have provided cost-effective and thorough crop assessment and 

decision-making solutions. Machine learning techniques can process large hyperspectral data to detect subtle 

changes in crop health caused by various stressors, providing valuable insights for crop management. Also 

combining hyperspectral and meteorological data with machine learning improves crop yield predictions by 

considering the effects of multiple stressors on crop development.  From these integrations, decision support 

systems can be developed using machine learning models by incorporating hyperspectral, environmental, and 

RTM data to assist the user community in making informed decisions for crop stress management. Using pre-
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processed spectra and machine learning algorithms, drought detection can be achieved a very high accuracy 

(Dao et al. 2021). 

4.6 Applying Hybrid Retrieval Method 
 

This section explores hybrid approach that integrates sensor data with complementary field data sources to 

enhance stressor monitoring and prediction. Data integration of multiple data sources i.e., data from various 

sensors, such as optical, thermal, and microwave, along with ground-based observations, weather data, and 

soil information enhances the accuracy of stress detection and predictive modeling. A study by Fei et al. (2023) 

showed that the use of multimodal data fusion and deep learning methods on UAV data resulted in good crop 

yield prediction. In another study, Ahmed et al. (2021) used hybrid machine learning approach and considered 

several soil management variables and harvest management features: Planting date and density, date of 

nitrogen application (both at planting and side-dress application), grain yield, harvest key, fresh and dry 

biomass, fertilizer rate, and nutrient uptake for nutrient stress management. Important is that these hybrid 

methods should be portable and independent from field measurement (Asma and Thomas, 2022). Hybrid 

approach leverages the strengths of different methods to address the limitations of individual techniques. In 

fact, nonparametric hybrid approaches are found to be highly accurate for the quantitative assessment of 

crop traits in optical remote Sensing. Most advanced crop-related research surrounds combining RTM and 

machine learning (ML) methods in a symbiotic manner such as integrating shallow or deep neural networks 

with RTM using remote sensing data to reduce errors in crop trait estimations that improve control of crop 

growth conditions in very large areas and are serving many precision agriculture applications now. 

However, hybrid methods can be classified into parametric or non-parametric based on their retrieval 

approach. The advantages and limitations of a parametric and non-parametric hybrid method can be seen in 

Table 8 which can help in choosing an appropriate approach in the project.  

Table 8. advantages and limitations of parametric and non-parametric hybrid retrieval methods.  

Hybrid Retrieval method Advantages Limitations and cautions 

Non-Parametric regression 

Uses physical laws Accuracy of results depend on 

RTM model type and design of 

LUT 

Accommodated to any data type 

with linear or nonlinear 

relationships 

Needs knowledge for 

optimization and realistic results 

Trainable with full spectrum 

information, band selection or 

transformed spectrum 

Model complexity increases as 

model progresses 

Perfectly implementing global 

maps and faster in calculation 
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Transparent inferential can give 

uncertainty information for 

assessing retrieval quality 

Fast at calculating global maps 

with perfect execution 

Can handle high dimensionality 

and large training data 

Training is computationally 

expensive 

Parametric 

Preserves physical principle Accuracy of results depend on 

RTM model type and design of 

LUT 

Absorption and scattering 

features of spectrum to be 

considered  

When using hyperspectral data, 

spectral range should be chosen 

carefully to generate a complex or 

simple VI 

Statistical relation between 

variable and spectral response 

can be taken 

Limited representatives of 

relation between VI and target 

variable using curve fitting 

function 

Simple to apply and 

computationally inexpensive 

Uncertainty calculation not 

provided, so accuracy can be 

challenged 

Interpretation is straightforward Covariate with other variables 

related to absorption features is 

not considered 

 Mapping crop traits over a large is 

not easy 

 

EO and in situ data integration can be done in several ways: 

1. Feature Fusion: Combine extracted features from different sources into a unified feature space 

for modeling. One example of feature fusion found in synergy of Sentinel-1 and Sentinel-2 Time 

Series for Cloud-Free Vegetation water content mapping in which several multiple-output 

Gaussian processes (MOGP) models evaluated to fuse efficiently Sentinel-1 (S1) Radar 

Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a 

dry agri-environment in southern Argentina in Figure 5.  
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Figure 5. illustrates example of feature fusion for canopy water content mapping using time series of Sentinel 

1 and 2 with machine learning technique – Multi output Gaussian process (Caballero et al. 2023). 

 

2. Data Fusion: Merge data from different sensors and in-situ information at the data level, such 

as fusing multispectral, hyperspectral, and thermal data for enhanced stress detection. One 

exemplary application found in Gopi and Periasamy (2023)’s work in which MLR models are used 

on the feature space derived from in situ and S1 SAR (L, S) bands by which enhanced soil moisture 

product generated and linked to plant water content modelled by Water Cloud Model, the 

resultant crop health schema with combination of MLR and WCM provided PWC and Soil 

moisture maps for detecting healthy and stressed sorghums and cotton crops. Figure 6 illustrates 

significance of non-parametric hybrid approach and its framework difference with a parametric 

approach.  
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a.                                                                                                    b. 

 

     c.                                                                                              d.            

 

 Figure 6. a) Example of hybrid retrieval methodology and b) popularity of hybrid based nonparametric 

methods [2002 – 2-22] (Source: Asma and Thomas et al. 2022) c) methodology design of parametric hybrid 

method based on VIs and RTMs d) integrating RTM with machine learning methods as example of non-

parametric hybrid methodology.  

 

3. Ensemble Methods: Utilize ensemble techniques like stacking or boosting to combine 

predictions from multiple models trained on different data sources. This category application is 

found mostly in crop yield predictions or selection of suitable cropping systems, but not for crop 

stress monitoring as such. The gradient boosting decision tree (GBDT), random forest (RF), 

extreme gradient boosting regression (XGBR), and a stacking ensemble ML algorithm have good 
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performances in solving regression problems (Aldress et al. 2022), Figure 7. Zewei et al. (2023) 

tested these ensemble methods on simulating soil salinity dynamics over cotton crops and 

proved the ML models, especially the XGBR and stacking ensemble ML algorithm, are useful tools 

to predict soil salinity, EC, cotton yield and ET. The use of the model is relatively simple, and the 

accuracy and stability are satisfactory. They can be used for real-time prediction of soil salinity, 

ET and cotton yield under drip irrigation in the future.  

 
 

Figure 7 indicates the type of ensemble models known to be the best data mining techniques 

and their differentiation from other conventional ML techniques. (Aldrees et al. 2022) 

 

4. Expert Systems: Combine domain knowledge via field sensors and rules-based approaches with 

data-driven models to improve interpretability and accuracy. Its major example is Digital Twin 

which is still developing by which farmers can manage operations remotely based on (near) real-

time digital information instead of having to rely on direct observation and manual tasks on-site. 

An example is shown in figure 8. This allows them to act immediately in case of (expected) 

deviations and to simulate the effect of interventions based on real-life data. Verdouw et al. 

(2021) explain how Digital Twins can advance smart farming.  

 

A well-designed hybrid retrieval method for crop stress detection can provide more accurate and reliable 

results compared to using a single data source or method. It leverages the complementary information 

available from multiple sources to enhance the monitoring and management of agricultural systems.  
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Figure 8. shows outcome of Smart Farming called Digital Twin as the next phase of Precision Agriculture for 

up-to-date information about farm operations. (Verdouw et al. 2021) 

Nonparametric nonlinear methods are more powerful in extracting information from subtle differences in 

reflection by supporting covariance between biochemical and biophysical variables. Nowadays, deep learning 

(DL), as extending machine learning, is starting to be explored for crop monitoring using hyperspectral images. 

DL has the advantage of handling a large data size of training samples to possibly improve the targeted 

variable. It can provide estimates of uncertainty and the use of the complete optical spectrum information. It 

is gaining momentum recently for image classification also the convolutional neural network based on DL is 

being applied widely. In the study by Chandal et al. (2021) a comparative assessment of three deep learning 

models (Alexnet, GoogLeNet and Inception V3) is provided for identifying the water stress conditions of three 

crops (maize, okra, soybean), in which GoogLeNet DCNN model is efficient classifier for the water stressed 

conditions for different types of crops. This model can be used for real-time embedded image-based system 

of detecting the onset as well as extent of abiotic stresses in crops. A recent review on deep learning-based 

computer vision techniques by Orka et al. 2023 revealed that most of the work targeted various micro and 

macronutrient deficiencies in crops covering rice and potassium shortage represent the most researched crop 

and abiotic stress. Some are found on water-related stresses including drought and submergence, but no 

research exists on the cognition of early indicators of water, heat stress or nutritional inadequacies. This 

project can contribute to addressing the gaps in current research related to early indicators of water and heat 

stress as well as nutritional inadequacies in crops, ultimately making a valuable contribution to the sustainable 

crop production. 

4.7 Best approach in developing new methods 
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While developing new methods, the accurate monitoring of plant stress needs a proper understanding of data 

collection, and analysis, which may vary depending on the conditions, the crop species, measured 

characteristics, and the stage of growth. A thorough understanding of crop light interactions, sensors, imaging 

platforms, and processing algorithms must be acquired to ensure that crop phenotyping meets the required 

criteria. First there is need to identify the purpose of monitoring (precision farming vs. environmental 

monitoring), the scale of monitoring (proximal vs. broad scale), the need for controlled experiments, and the 

type of monitoring (qualitative vs. quantitative). This will determine the most suited processing approach to 

maximize the accuracy of stress detection and quantification. For broad-scale monitoring, relevant 

wavelengths linked to stressor-specific symptoms can help to develop descriptive variables for machine 

learning models. Empirical regression models can be suitable for large-scale monitoring when a robust 

calibration dataset is available for the specific region and conditions of interest. However, they may struggle 

with extrapolation beyond the training data. On the other hand, RTMs are versatile and can simulate various 

scenarios. They require accurate input parameters and can be computationally intensive. They are often used 

in conjunction with other techniques for large-scale monitoring. Machine learning algorithms can handle a 

wide range of stress factors and provide accurate predictions when properly configured. They may lack 

interpretability, especially deep black-box models. They require substantial training data and can overfit if not 

properly regularized. Also, model response accuracy truly relies on data quality and size (Barbedo, 2019). Deep 

Learning is powerful for image-based monitoring, making it suitable for large-scale monitoring when a 

significant amount of labeled image data is available. The best approach is to combine multiple techniques to 

leverage their respective strengths in large-scale crop stress monitoring, ensuring both accuracy and 

interpretability. 

5. TEST AREAS FOR EXPERIMENTAL DATASET 
 

The project will consider three major grain crops of the world: rice, wheat, and maize. They are staple foods 

for billions of people and understanding how these crops respond to stress is vital for global food security. 

They are not only consumed directly but are also used as feedstock for livestock and as raw materials in various 

industries. Stress-induced reductions in yield can have widespread economic implications. Any threats to their 

production could lead to food shortages and price spikes, affecting vulnerable populations the most. They 

occupy vast agricultural lands, and their production often involves the use of pesticides, fertilizers, and 

irrigation, which can impact ecosystems and water resources. Studying their responses to stress can help 

develop more sustainable agricultural practices which can lead to the development of more stress-tolerant 

varieties through breeding or genetic modification. Improved crop varieties can help farmers mitigate the 

impacts of stress and increase overall crop yields. 

 

Field protocols for measurements of different biophysical and biochemical parameters and stress conditions 

are required in the test areas to understand the relationship between key stressors and their remote 

signature. Our proposed test sites should cover a wide representation of different stress conditions. For which 

a trade-off analysis required for the selection of the state-of-the-art methods including time series analysis, 

RTM, machine learning, quantitative spectral analysis (e.g., spectral derivatives and continuum removal), and 
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spectral indices as described in above sections. The knowledge gained on the cumulative effect of multiple 

stressors using such multi-source and multi-model approach may also require cloud computing and HPC 

framework. The datasets from in situ measurement of crop parameters and stress conditions, simulated data 

using radiative transfer models, and existing data in different crop stress conditions will provide a complete 

assessment of the cropping systems. A detailed cross comparison and verification would be needed in the 

selection of final methods and algorithms. The resulting EO-based stress maps/products from test sites can 

be cross compared and verified with simulated datasets generated by the machine learning or radiative 

transfer model to gain a thorough understanding of the range of validity, limits, and benefits of the different 

existing products. 

 

 This field scale investigations can be scaled up to regional scale analysis using regular RS monitoring data. But 

the main requirement is, test sites should represent different stress conditions (nutrient stress, water and 

heat stress and lodging) in cereal crops for testing the performance of various crop traits retrieval methods. 

For testing the robustness of selected methods, validation data will be comprised of in situ measurement of 

crop parameters and stress conditions, simulated data using radiative transfer models (RTM), and existing 

data in different crop stress conditions. In this project, three pilot sites are consolidated on which a large set 

of information is accessible and detailed measurements are available through various field campaigns.  

 

5.1 Test site I - Rice cultivation in Andalusia, Spain 
 

Andalusia, with about a third of all Spanish rice production, is the first rice producing region, although the area 

dedicated to this crop varies considerably depending on problems in the availability of water for flooding. 

Currently, the area under rice cultivation is close to 39,000 ha (Figure 9). This area uses different water sources 

(water from wells, river channels) for irrigation that accounts for about 80% of total water withdrawals in the 

region, out of which, 71% of irrigation water is derived from surface water, 28% from groundwater, and 1% 

from non-conventional water resources (i.e., reutilisation, desalinisation). Drip irrigation systems cover 64% 

of irrigated land, whereas sprinkler systems and surface irrigation span 13% and 23% of irrigated land, 

respectively. Arable crops account for 30% of the agricultural water withdrawal in the region (mainly due to 

rice and cotton production), followed by fruit trees (22%), olive trees (19%), and vegetables (10%). Rice 

cultivation in Spain is limited to areas with high salinity and significant environmental restrictions, such as 

deltas and marshes belonging to or close to natural parks.  
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Figure 9. Types of Land use in Andalusia showing rice cultivation mostly in the west marked by red box (Source: 

Pilar and Maria, 2019) 

 

An extensive field campaign has been carried out recently in the summer of the year 2023 to characterize the 

agronomic parameters of the AFR soils that can give information on stressors related to salinity, deficit or 

excess of nutrients, and heavy metal toxicity. Field data is accessible from five different campaigns in line with 

the Sentinel-2 acquisition dates and EnMap for the rice growing season (May – June 2023).  Field 

measurements of chlorophyll, LAI and reflectivity have been taken using SPAD, LICOR 2200-c, and ASD 

FieldSpec 4 spectroradiometer during key growth stages of rice development (tillering, productive tiller critical 

stage (N-n), jointing, booting, heading, and filling stage). 100 soil samples in the month prior to rice planting 

have been collected to analyze different agronomic parameters in the laboratory, such as: electrical 

conductivity, nutrient content (KNP) and heavy metals. Soil samples are also measured using an ASD FieldSpec 

Pro spectrometer (400-2500 nm). Agronomic parameters are estimated using in situ measurements i.e., 

above, and below canopy LAI from Licor 2200c following LICOR protocol, leaf pigments using SPAD 502, 

reflectance using ASD and a Hyperspectral drone system (537 channels -VIS-NIR (400-1000 nm), SWIR (900-

2500)), and spectral information also extracted from the new European hyperspectral mission EnMap, 

acquired during the month prior to seeding. 
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Figure 10. 100-point locations showing stratified random soil sampling in rice farm, Andalusia.  

 

Additionally, the spectral measurements of soil samples (Figure 10) measured with the spectrometer is being 

convolved to the EnMap spectral response function to obtain the Look Up Table (LUT) that acts as an 

additional model calibration/validation set, to compare new retrieval approaches. Rice grain samples are 

being collected form every experimental plot to analyze proteins and trace elements (i.e., As). Chlorophyll 

content and LAI information from Sentinel 2, PRISMA and EnMAP, along with in situ measurements from field 

campaigns. This information can be used to quantify and improve understanding of rice crop cumulative 

response to multiple stressors by which the potential of new European hyperspectral missions in agricultural 

monitoring such as EnMap can be evaluated. This experimental data is sufficient to model soil agronomic 

parameters, chlorophyll, LAI, and yield, from open-source algorithms such as Partial Least Square Regression 

(PLSR) or Random Forest, in a High-Performance Computing (HPC) environment. 

 

5.2. Test site II - Marchfeld region, Austria 
 

The Marchfeld region (ca 60,000 ha) is one of the major crop production areas of Austria for grain and 

vegetables and hence crop failure due to stressors may have severe consequences for food security. The area 

is generally flat with an altitude of ~ 160-180m above sea level (Figure 11). Around 75% of the area is used for 

agriculture and 30 % is irrigated. There are 884 farms with more than two-thirds (72%) professional farms 

where farming is the only source of income with average farm size around 55ha. It has semi-arid climate with 

often severe precipitation shortages (typically only 250 - 300 mm of precipitation during May-September). 

Therefore, water stress is a major threat to crop production areas as groundwater resources are increasingly 
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limited in this area. Water needs during summer months can only be partially alleviated through irrigation, 

groundwater in the Marchfeld region must be distributed in the urban and industrial sectors, leading to high 

pressure on the quantity and quality of water resources. Water stress is projected to further increase in the 

future due to climate change. Soils in the region is highly heterogenous and have low to moderate water 

storage capacity (Eitzinger et al. 2013; Thaler et al. 2012). This field has been under observation for long time. 

Hence, a wealth of information is available on weather, crop status and performance (e.g., ET, structural and 

biochemical crop characteristics, crop yields) as well as soil optical and hydrological properties (e.g., field and 

lab spectrometer measurements under different soil wetness conditions; soil properties such as texture, field 

capacity and organic carbon content). Several high-resolution vegetation indices maps are available for 

stressed and non-stressed fields. The list of available datasets is shown in Table 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  RGB image of Sentinel 2 displaying maize and summer wheat crop parcels in Marchfeld region 

under observation since 2017.  

 

Table 9. shows the available dataset for Marchfeld site.  

 

Product Instrument 

Dataset 

Spatial resolution Temporal 

resolution 

Temporal 

Coverage 

Spatial 

Extent 

Reflectance VI EnMap, PRISMA, S-

2 

30m, 10m variable/5 2022+, 2019+, 

2017+ 

Sites 

Air-temperature, 

Precipitation, 

Humidity, Wind 

speed 

INCA, SPARTACUS 

v2.1 

1 Km Hourly/Daily 2011-2021, 

1961+ 

Sites 

Summer Wheat  

Maize  

Crop Masks  
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5.3. Test site III - Bonifiche Farm, Italy  
 

Bonifiche Ferraresi farm situated in Jolanda di Savoia (44°52′59′′N, 11°58′48′′), Ferrara, Italy is an agri-food 

business with one of the largest agricultural holdings in Italy (Figure 12). It has 3850 ha of arable land, the 

majority of which is made up of clay and silty soils. Mostly climate is warm and moderate. The farm grows 

seven major crops i.e., wheat, barley, corn, rice, soybeans, potatoes, and other crops for horticulture and 

medicine. Typically, these crops are produced in succession over several years in rotation. Winter wheat, 

which is susceptible to severe lodging, is seeded from the end of October to the beginning of November and 

harvested by the end of June. Several wheat cultivars were grown in 2018, including PR22D66, Marco Aurelio, 

Claudio, Monastir Massimo Meridio, Rebelde, Odisseo, Giorgione and Senatore Capelli. The cultivation area 

of wheat in 2023 was 664.24 ha, the wheat field sizes varied between 2.38 and 84.86 ha.   

In May 2023, an extensive field campaign was carried out in which several in situ biophysical parameters 

including crop height, plant density, LAI, biomass, tiller number, shoot numbers, cover percentage, fresh 

biomass, flower weight etc. as well as stress related parameters such as slant height, vertical lodged height, 

lodged area %, point of line failure, crop angle inclination, and lodging score) were measured.  Further, wheat 

samples were destructively harvested and carried to laboratory for subsequent measurements of lab-based 

biochemical measurements (dry biomass, dry matter content, water content, nitrogen content, carbon 

content).  Field sampling in lodged and healthy fields was carried out using a stratified random sampling 

approach at three levels: 1) (ESU) Plot – (90 m X 90 m); 2) Subplot – (15 m X 15 m); 3) Microplot – (1.5 m X 1.5 

m). In each ESU/plot, five subplots and in each subplot three microplots were considered for measurements 

of physiological parameters. In total 65 (ESU) plots have been sampled of which 33 were lodged and 32 were 

healthy plots. In the measured ESUs, a total of 322 subplots (165 lodged and 157 healthy subplots) and 968 

microplots (498 lodged and 470 healthy microplots) were measured. 

 

The project aims to use both in-situ and lab measurements of physiological parameters to detect lodging and 

assess its severity in wheat fields in combination with satellite imagery from Sentinel 2, simulated Chime, 

DESIS and EnMap. The detection and mapping of lodging can be advanced through utilization of narrowband 

indices, machine learning algorithms and inversion of PROSAIL-PRO radiative transfer modeling while 

considering multiple factors like crop angle of inclination, leaf area index (LAI), spectral characteristics, and 

absorption features. This test site can assist in identifying specific spectral regions sensitive to lodging and 

predict key agricultural variables such as leaf inclination angle, LAI, nitrogen, chlorophyll, and water content, 

which are crucial indicators for lodging in wheat.  
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Figure 12.  Location of the study area and distribution of sampled plots during field campaign 2023 in Jolanda 

di Savoia, Ferrara, Italy.  

 

6. BEST APPROACHES FOR VALIDATING EO BASED CROP 
PRODUCTS 

 

This section deciphers a suitable approach to validate stress maps derived from remote sensing data if 

developed algorithms are effectively representing the actual stress conditions of the field. For systematic 

validation, we need a feedback loop between satellite-based monitoring and field observations to 

continuously improve the accuracy of crop stress maps. For which algorithms will be tested on different crop 

types at different growth stages, as stress responses can vary significantly among crops. Certain validation 

metrics can be used in this process for instance correlation coefficients, RMSE, Bias, accuracy assessment, 

time series, regression plots, variance, and phase differences etc. while comparing results with ground-based 

information. For hybrid model's performance evaluation, suitable metrics could be on accuracy, precision, 

recall, F1-score, or area under the receiver operating characteristic curve (AUC-ROC). It can explain the 

uncertainties in the derived products, besides that, some simple measures like visual inspections, collecting 

data from multiple locations within satellite image area and yield assessment could also be useful. The project 

will consider various points while developing a final product, according to figure 13.  

• Using installed ground-based instruments, such as spectroradiometers and thermal cameras, at some 

validation sites other than test areas to directly measure crop properties and compare them with 

intermediatory subject to availability i.e., satellite or airborne data. Dividing pilot areas into training 

and validation datasets for different spatial zones and temporal periods to assess algorithms 

performances in stress detection. 
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• Soil moisture sensors data at various depths can be used to validate remotely sensed water stress 

products. Similarly leaf-level measurements, such as chlorophyll content, leaf water potential, and 

stomatal conductance, to validate remote sensing-based indicators of crop stress. 

• Direct comparison and validation of spectral indices from high-resolution, in-situ spectral data that 

closely matches the spectral bands of the remote sensing. 

• Use of validation transects within fields to capture spatial variations in crop stress. These transects 

can serve as reference areas for remote sensing validation. Besides that, simultaneous data collection 

with remote sensing data acquisition will minimize temporal discrepancies that could affect 

validation accuracy. 

• Analyzing temporal trends in both remote sensing and ground truth data will assist in understanding 

the dynamics of crop stress over time. 

• Engaging agronomists and field experts for insights into specific stressors affecting the crop 

• Experimental data from other sites on mobile ground platforms (e.g., tractor-mounted sensors) taken 

at different growth stages and across larger areas can be used. 

• Use of Monte Carlo simulations or bootstrapping methods for estimating uncertainty associated with 

remote sensing-based crop stress products. 

The project will use bottom-up approach to validate regional to global crop stressors products derived from 

remote sensing data (i.e., from local field-level measurement to global comparison with satellite-derived 

single or multiple stressor products) (Figure 14). In validation process, we will be considering.   

• Methods and instruments used to collect the field stress conditions at each site. 

• Measurement extent and sampling scheme at each site. 

• Integration of field data with high-resolution imagery (EnMap, DESIS, Sentinel 2, PRISMA) at 30 m 

resolution. 

• Algorithms used in deriving crop traits as stress indicators. 

• Methods to compare high-resolution product with moderate-resolution product (CCI Soil Moisture 

product, MODIS Evapotranspiration products, LSA-SAF ET product, MOD17GPP product, newly 

developed Sen4GPP product by UoS and Gross Dry Matter Product (GDMP) by Copernicus Global 

Land Service.  

• Network of sites available for field validation (Fluxnet, AgMerra, PhenoCam, EnMap validation sites). 
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Figure 13. Flowchart displaying different stages of comparison for crop stressor product mapping.  

In our test sites, local field measurements are taken on elementary sampling units (ESU), sub plots and 

microplots following field specific sampling strategy to capture the variability across the corresponding site 

extent. The measurements are repeated within the ESU specially to capture the variability within the high 

spatial resolution imagery (30 m). The number of ESUs is varied by extent of the site, field variability and the 

extent of the ESUs themselves. This field data from ESUs will be linked to the spectral features from aerial and 

satellite base images through various up scaling approaches (RTMs and machine learning) which will establish 

the relationship between the field-based crop stress estimates and high-resolution imagery i.e., EnMap, 

Sentinel 2, PRISMA. Final step would be large scale validation through the comparison between the 

aggregated high-resolution crop stressor maps and the corresponding satellite products over Europe and 

Canada such as Sen4GPP, Evaporative Stress Index – EcoStress as well as an ensemble of sites from sources 

mentioned in section 3.3.  
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Figure 14. Validation framework for high resolution Crop stressor products and their deriving methodologies.  

All these validation activities are essential to check the accuracy of our product and to guide refinement of 

algorithms used. This evaluation will show the degree of coherence between the products of the experimental 

dataset with respect to the current range of stress indicators determined using i) all independent products 

(comparison of global/regional mean values, mean regional/local seasonal cycles, interannual variability) ii) 

identify the reasons for the differences, if any, between the experimental dataset products iii) to assess, for 

regions where the Lodging/salinity/drought products would be coherent, the weaknesses of the approaches 

relying on radiative transfer modelling or machine learning approaches  pointing possibly to some process 

weaknesses and drawing conclusion on how to improve the stress monitoring methodologies. 

7. EUROPEAN AND INTERNATIONAL INITIATIVES ON CROP 
STRESS EVALUATION 

 

Integrating of EO4Cereal Stress into other European and international initiatives that are already focused on 

monitoring the impacts of multiple stressors on crops can enhance collaboration, data sharing, and the overall 

effectiveness of our research efforts. Collaboration at both the European and international levels can lead to 

more comprehensive and globally relevant findings. Here are some notable initiatives and organizations that 

could be considered for integration: 
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7.1. European Initiatives 
 

1. Copernicus Program: The Copernicus program, led by the European Space Agency (ESA) and the 

European Commission, provides a wealth of Earth Observation data and services. Sentinel mission 

datasets will be deployed in the experimental dataset generation.  

Weblink: 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Europe_s_Copernicus_progra

mme 

2. JRC - Joint Research Centre: The JRC, the European Commission's science and knowledge service, is 

actively involved in research related to agriculture, land use, and environmental monitoring. 

Partnering with JRC can provide valuable insights and resources. 

Weblink: 

https://joint-research-centre.ec.europa.eu/scientific-activities-z/agricultural-monitoring_en 

3. EC JPI FACCE (Joint Programming Initiative on Agriculture, Food Security, and Climate Change): 

focuses on addressing the challenges of food security and agriculture in the context of climate 

change. Integration with JPI FACCE can facilitate access to research networks and knowledge sharing. 

Weblink: 

https://www.faccejpi.net/en/faccejpi/about.htm 

4. EU-funded Research Projects: Many EU-funded research projects and consortia listed below are 

dedicated to agricultural monitoring and sustainability. Joining or collaborating with these projects 

can provide access to shared resources and expertise. Their list with briefings is given in table 10. 

Table 10. List of European funded projects with point of contact and duration of the projects.  

Project  Objective Coordinator Period 

MEF4CAP - EU's Horizon 
2020 research and 
innovation programme 
https://mef4cap.eu/ 
 

bringing monitoring and technology expertise together 
to investigate the possibilities and limitations of satellite 
and sensor data and the increased digitalisation within 
the agricultural sector. 

Stichting 
Wageningen 
Research, 
 Netherlands 

1 Oct 2020 – 
31 January 
2024 

INVITE - EU's Horizon 2020 
research and innovation 
programme 
https://www.h2020-
invite.eu/ 
 

to improve both efficiency of variety testing and the 
information available to stakeholders on variety 
performance under a range of production conditions and 
biotic and abiotic stresses. 

Acta les instituts 
techniques 
agricoles, France 

5 Years 

https://joint-research-centre.ec.europa.eu/scientific-activities-z/agricultural-monitoring_en
https://mef4cap.eu/
https://www.h2020-invite.eu/
https://www.h2020-invite.eu/
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DROPSA 
https://www.eppo.int/RES
OURCES/special_projects/
dropsa 
 

Provide strategies to develop effective, innovative, and 
practical approaches to protect major European fruit 
crops from pests and pathogens 

University of 
Padova, Italy 

January 
2014 to 
February 
2018 

AgriLink - Connecting 
farmers, advisers and 
researchers for productive 
and sustainable agriculture 
https://www.agrilink2020.
eu/ 
 
 

6 Living Labs to develop and test new advisory methods 
and tools (including information and communication 
technologies - ICT supported) to better link research and 
practice. 

James Hutton 
Institute, 
Scotland 

2017 to 
2021 

Horizon Europe 
ScaleAgData 
https://scaleagdata.eu/en 
 

to bridge the data gap of observations at the local level 
by unlocking, integrating and upscaling the data from in-
situ sensors on farms. 
To develop the data technology (from data streaming, 
data analytics and AI (Artificial Intelligence) applications) 
 

VITO Remote 
sensing, Belgium 

December 
2022 - 
December 
2026 

DIONE 
https://dione-project.eu/ 
 

developing a direct payment controlling toolbox for 
paying agencies to abide by the modernised CAP 
(Common Agricultural Policy) regulations, involving 
novel techniques that will improve the capabilities of 
satellite technology while integrating various data 
sources (drones, soil sensors and mobile applications). At 
the same time a system developed on a regional or 
national scale will evaluate the monitored parameters to 
form evidence-based conclusions regarding eventual 
environmental impacts on an entire region. 

Institute of 
Communication 
and Computer 
Systems, Greece 

January 
2020 to 
October 
2022 

CIRCASA 
https://www.circasa-
project.eu/ 
 

to develop international synergies concerning research 
and knowledge exchange in the field of carbon 
sequestration in agricultural soils at European Union and 
global levels, with the active engagement of all relevant 
stakeholders. 

Institut national 
de recherche 
pour 
l'agriculture, 
l'alimentation et 
l'environnement, 
France  

Nov 2017 to 
Feb 2021 

 

 

5. EOS- Agro platform is a web-based commercial agriculture monitoring system designed to offer 

various services to farmers, agricultural cooperatives, and agribusiness firms. These services typically 

include early detection of crop risks, cost reduction strategies, farm performance monitoring, and 

customized solutions using AI-driven satellite-based data and analysis. https://eos.com/products/crop-

monitoring/ 

6. Agricultural Drought Monitoring System (ADMS) in Poland – is based on meteorological data and soil-

agricultural maps to present the spatial heterogeneity of water retention in different soil drought 

vulnerability categories. The functionality of the ADMS has been modified by using NDVI and NDWI 

https://www.eppo.int/RESOURCES/special_projects/dropsa
https://www.eppo.int/RESOURCES/special_projects/dropsa
https://www.eppo.int/RESOURCES/special_projects/dropsa
https://www.agrilink2020.eu/
https://www.agrilink2020.eu/
https://scaleagdata.eu/en
https://dione-project.eu/
https://www.circasa-project.eu/
https://www.circasa-project.eu/
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from S-1 and S-2 images, which are promising water shortage indicators for crops. 

https://susza.iung.pulawy.pl/en/ 

7.2. International Initiatives 
 

Some international programs are;  

1. Water Stress and Climate Indices for Africa’ (WaSCIA) - aims to deliver high-quality Water Stress and 

Climate Indices through an easy-to-use web interface to help the management of drought and water 

stress in Africa, operated by TELESPAZIO VEGA UK LIMITED (GB). The goal of the WaSCIA service is to 

provide crucial information to help detect early onsets of water stress related to drought conditions, 

its severity and spatial extent all over Senegal. Its methodology framework is shown in figure 15 

deciphering fusion of Sentinel 2 and 3 products and indices for Evapotranspiration and Soil moisture 

mapping used for water stress detection. https://eo4society.esa.int/projects/wascia 

 

Figure 15. explains methodology framework of WaSCIA project. 

2. GEOGLAM (Group on Earth Observations Global Agricultural Monitoring): is an international initiative 

aimed at improving global agricultural monitoring using EO data. EO4CerealStress could align with 

GEOGLAM to contribute to global food security efforts. https://earthobservations.org/geoglam.php. 

3. FAO - Food and Agriculture Organization of the United Nations: has various programs and data 

portals related to crop monitoring and agricultural sustainability like GAEZ, WAPOR etc. Collaborating 

with FAO can help disseminate our project's findings and contribute to global policy 

recommendations. FAO report on Crop yield response to Water, Irrigation and Drainage paper 66 by 

https://eo4society.esa.int/projects/wascia
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Pasquale Steduto (FAO, Land and Water Division) could be a useful baseline material for studying 

water stress mitigations in crops (Carr, 2013).  

i. Agro-Ecological Zones (AEZ) modelling framework and databases, GAEZ: 

https://gaez.fao.org/ 

ii. The FAO portal to monitor Water Productivity through Open access of Remotely sensed 

derived data, WAPOR: https://wapor.apps.fao.org/home/WAPOR_2/1 

4. CGIAR (Consultative Group for International Agricultural Research): CGIAR is a global research 

partnership dedicated to reducing poverty, enhancing food security, and improving natural resource 

management. Collaborating with CGIAR centers can provide useful insights in agricultural research. 

One connection could be Stress Tolerant Maize for Africa (STMA) project implemented to improve 

maize varieties with resistance and tolerance to drought, low soil fertility, heat, diseases such as 

Maize Lethal Necrosis and pests affecting maize production areas in the region. Project closed in 

March 2020. Link is here: https://www.cimmyt.org/projects/stress-tolerant-maize-for-africa-stma/ 

5. AfricaRice (2014 – 2019) and its team developed and deployed rice varieties with a high yield and 

better tolerance to drought, submergence, salinity, iron toxicity and low temperature, as part of a 

joint AfricaRice/IRRI project. National agricultural research systems (NARS) scientists (particularly 

breeders) and rest of the partners were involved in the selection process to obtain the best cultivars 

for their own farmers and consumers. Details are in https://www.africarice.org/arica 

6. Drought Watch Program (Canada) is a national monitoring program using earth observation, climate 

data and models to evaluate crop stress related to extreme weather. Data sets include crop 

condition, satellite soil moisture (SMOS), satellite evapotranspiration (ALEXI-MODIS) and integrated 

products like the Vegetation Drought Response Index (using MODIS), the Canadian Drought Monitor 

(integrating many data sets include groundwater estimates from GRACE) and yield forecasts.  Details 

are at: https://agriculture.canada.ca/en/agricultural-production/weather and an interactive tool is 

available here: https://agriculture.canada.ca/atlas/apps/metrics/index-en.html?appid=ccm-epc   

 

 

 

 

 

 

 

 

 

https://gaez.fao.org/
https://wapor.apps.fao.org/home/WAPOR_2/1
https://agriculture.canada.ca/en/agricultural-production/weather
https://agriculture.canada.ca/atlas/apps/metrics/index-en.html?appid=ccm-epc
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